
3URMHW�GH�6HPHVWUH�,

e&2/(32/<7(&+1,48()e'e5$/(
'(/$86$11(��6:,7=(5/$1' �(3)/�

$/7,),(5
:(%�$&&(66,%,/,7<�(1+$1&(0(17�722/

9HUVLRQ����

,1�&2//$%25$7,21�:,7+

:�&�:$,�(5

352-(&7�683(59,625

$I]DO�%DOOLP��0(',$�²�/,7+�²�',�²�(3)/

3URI��*LRYDQQ\�&RUD\��/,7+�²�',�²�(3)/

E\�0LFKDHO�9RUEXUJHU��PLNH#YRUEXUJHU�FK!

KWWS���ZZZ�YRUEXUJHU�FK�SURMHFWV�DOW

1RYHPEHU������²�)HEUXDU\�����

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

�

ABSTRACT

The goal of this project («ALTifier – Web Accessibility Enhancement Tool») was to research and im-

plement tools to generate textual alternatives such as the ALT attribute for IMG and other graphical

HTML elements.

Often images and some other HTML tags lack a textual alternative. This makes them inaccessible to

screen readers, non-visual/text-only browsers and Braille readers. Adding alternate descriptions for

these tags is one important aspect of making pages more accessible.

On one hand, the project focuses on HTML authors with a tool to set ALT texts on a site-wide per-

image basis, instead per each occurrence in HTML documents. The idea of this tool is motivate HTML

authors to provide ALT text for all images by facilitating this job. A graphical (GUI) and command-line

(CLI) version of such an application are presented.

On the other hand, for users surfing on existing sites with lack of ALT text, a filter tool tries to guess

ALT text by heuristics. This tool can be used in a proxy server or CGI which filters/transforms HTML and

reads pages from the original Web server, inserts missing ALT text by attempting to "guess" it, and sends

them on to the Web client.

The heuristics used to guess alternate text range from looking at an image's height & width to identify

simple cases such as bullets and rulers, to analyzing hypertext links for extraction of usefull document

link titles.

The project report gives a detailed description of the implementation and explains design choices.

keywords: ALT, IMG, HTML, C++, Filtering, W3C, WAI, Web, Accessibility, Braille, Screen Reader,

Proxy, CGI, HTML Tool, Blind or Visually Impaired People, User Interface Transformation

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

�

CONTENTS

1 Specification and Requirements 5

1.1 Introduction.. 5

1.2 Image Classes... 7

1.3 Toolkit Structure, Modules and Overall Architecture 8

2 USAGE 10

2.1 ALT_Filter Repair .. 10

2.2 Windows GUI for Web Authors.. 11

2.3 UNIX CLI Command for Web Authors... 12

3 Implementation 14

3.1 ALT Scanner & HTML Tags to ALTify ... 14

3.2 ALT Registry (Storage Back-End Module)..................................... 17

3.3 ALT Guess Heuristics (Heuristics Back-End) 18

3.4 ALT_Filter Implementation (Front-End) ... 20

3.5 ALT_GUI Implementation (Front-End)... 20

4 Future Extensions & Directions 21

4.1 Embedding the ALT_Filter in more applications 21

4.2 Extending ALT_CLI and XML parsing ... 22

4.3 Extending the Scanner .. 22

4.4 Extending ALT_Guess .. 22

4.5 Developing ALT_GUI into Shareware ... 23

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

�

5 Acknowledgements 24

6 References 25

7 Appendix 26

7.1 Copy of an Introduction to the "A-Prompt" project 26

7.2 Document Link Title (Idea) .. 27

7.3 Complete ALT_Filtered HTML example .. 28

8 Some source code 30

8.1 ALT_LEX.L .. 30

8.2 ALT_GUESS.CPP... 36

8.3 ALT_REGISTRY.H.. 41

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

�

1 SPECIFICATION AND REQUIREMENTS

1.1 INTRODUCTION

Web Accessibility is the research topic that deals with how to make the Web accessible to people with

disabilities such as the blind who use Braille devices or screen readers, to people with low bandwidth

connections or old browsers, or to people using devices such as miniature user agents like mobile phones

etc.

Often images and some other HTML tags lack a textual alternative. This makes them inaccessible to

screen readers, non-visual/text-only browsers and Braille readers. Adding alternate descriptions for these

tags is one important aspect of making such pages more accessible.

The main sources of information are the W3C's Web Accessibility Initiative (WAI1) or Webable2. Of

major interest to this project are the "WAI Guidelines For Authoring Tools"3 and the general "WAI Ac-

cessibility Guidelines"4.

Note that accessibility should not be confused with Usability in Web Design, the research topic that

deals with questions of clear structure and presentation of a Site, see for example Nielson's UseIt5 articles.

This project develops a complete toolkit which can be used to add and edit accessibility enhancing

textual alternatives, with three different main modules implemented to address the issues:

♦ Scanning HTML documents for textual alternatives, and rewriting HTML with new ALT

♦ Guessing missing ALT, based on various rules and heuristics as shown later

♦ ALT Registry, used as look-up "database" for the Guessing, incl. XML Export & Import

All the technically different forms of textual descriptions are technically stored in ALT or TITLE at-

tributes or the content of HTML tags and will be called "ALT tags" or simply "ALT" in this paper. The

first part of the toolkit is an HTML analyzer/scanner that allows to retrieve and set ALT independent of

the different tag types, and the distinction of attribute or content. This scanner is HTML 4.0 compatible,

1 http://www.w3.org/WAI
2 http://www.webable.com
3 http://www.w3.org/WAI/AU/WAI-AUTOOLS.html
4 http://www.w3.org/TR/WD-WAI-PAGEAUTH
5 http://www.useit.com

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

�

and supports the ALT or TITLE attributes of IMG, AREA, INPUT, APPLET, OBJECT and FRAME tags,

as well as tag's content as opposed to an attribute, for example in the HTML 4.0 OBJECT nesting.

Another part of the toolkit, a so-called back-end module, can automatically guess ALT to a certain de-

gree, by using information in the same and in linked pages, and by recognizing trivial ALT description

such as "* " for bullets and "" (empty) for spacer images etc.

The back-end modules are then combined into three applications: An ALT enhancing HTML filter, an

ALT GUI tool, and an ALT CLI tool. The GUI & CLI tool both allow to crawl an entire site automati-

cally.

After presenting the fundamental idea of different "image classes" that appear on Web pages, a brief

introduction to the application's general structure is presented. Following is a detailed description of the

heuristics used to find alternate textual representation, and how various HTML tags are affected.

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

�

1.2 IMAGE CLASSES

Several "image classes" appear in HTML documents and can be distinguished based on the following

criteria. These classes influence the automatic choice ("guessing" & "suggestion") of ALT text:

♦ Illustrations are images carrying information and graphically explain or interpret some in-

formation often contained in the surrounding text already. They are usually "big" and

should have a meaningful ALT and ideally LONGDESC, both of which are difficult to

"guess" automatically. (In theory, ALT for these images could sometimes be identified by

looking at the textual context, meaning the preceding and following paragraphs, and ap-

plying some natural language recognition. This initial idea was dropped because repeating

existing text seemed of limited practical use.)

♦ Navigation aid images are graphical buttons and similar images, which appear inside a

link or image map. A short and useful ALT for an image of this class can be found by

looking at the link target itself or using textual links with the same target. (In theory,

chances are also high that OCR recognition would succeed for this kind of "button" image,

often having "Next" or "Support" or similar text on it. The additional benefit of using OCR

in the guessing did not seem substantial enough to lead to an implementation during this

project, though.)

♦ Presentation and Decoration: This images are used to make a page "look nice", but they

usually don't contain any valuable information. Some well known presentational images

are graphical rulers and bullets, substituting HR and UL/LI . Images in this "well-known

class" have standard and constant ALT, such as '*) ' and '----- ' or similar. Another sim-

ple example are transparent 1x1 GIF images often used by professional web designers for

layout purposes. They represent another "well-known class" with ALT="" . (Such trans-

parent GIFs could be recognized either by it's minimal file size, often 34-43 bytes only, or

by their minimal image size, often 1 pixel only height or width.)

Note that a class such as "icons & symbols" does not fall into this categorization, as an icon could be

anything from illustrational to navigational to presentational, depending on it's usage. Note also that a

thumbnail image of the form

will usually belong into the category illustrations, not navigation, even though contained in a link.

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

�

1.3 TOOLKIT STRUCTURE, MODULES AND OVERALL ARCHITECTURE

Back-End Structure

ALTifier consists of a core engine (back-end modules) with the general functionality (scanning, stor-

ing, guessing, writing) which is used from several front-end applications:

ALT_Scanner
(HTML Input)

Guess

ALT_Scanner
(HTML Output)

Crawl ing

XML Regist ry

ALT_Regis t ry

Image 1: ALTifier Toolkit General Structure (ALT_Scanner HTML Reading & Writing,
ALT_Registry storage incl. XML Export/Import, Guess Engine, Crawling list)

♦ ALTifier lexical analyzer/scanner back end, to scan and write HTML.

Built around a LEX definition, platform neutral C++ compiled by VC++ & gcc.

♦ ALT_Registry to store ALT information found by the scanner and needed by Guess.

♦ ALTifier heuristics engine back end, platform neutral C++ compiled by VC++ & gcc.

♦ Crawl engine for interactive Windows & UNIX front-ends, shared code with KISSfp6

6 http://www.vorburger.ch/kissfp

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

�

Front-Ends

Three front-ends were built around the above core engine:

♦ ALT_Filter , can for example be integrated HTTP proxy server7 for auto-repair of ALT

without human intervention. Not using crawling and XML back-end modules.

♦ UNIX command-line tool ALT_Report to retrieve ALT for an entire site, then edit them

manually in an XML file. Written in simple C++ with gcc/Visual C++.

♦ Interactive site-wide Windows GUI front end.

Platform & Environment

The back-end and CLI front-end was developed under MS Windows using Visual

C++ 5.0 and LINUX gcc, because these systems were available and the author had

prior usage experience. This is platform neutral C/C++.

The GUI front-end is based on Inprise's (former Borland) excellent RAD

tool "C++ Builder" and is probably not easily portable to any other platform.

7 What's a Proxy Server? See: http://webopedia.internet.com/TERM/p/proxy_server.html

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

2 USAGE

2.1 ALT_FILTER REPAIR

This is a sample of how the filter CLI front-end interface looks like:

mike@alinux:/home/mike/ALT/src > alt_filter

ALTifier 1.0 -- http://www.vorburger.ch/projects/alt/
(C) Copyright 1998-1999 Michael Vorburger (alpha ware)

USAGE: alt_filter FILE.HTML
 Reads FILE.HTML, improves ALT, and writes back to STDOUT.

This filter can be for example be "plugged" into a proxy server realized by the author in an earlier

project8 or any other proxy or CGI that can call an external HTML filter.

At the time of writing, a version of the filter was installed on the Accessibility Enhancement gateway

(CGI) by Silas Brown from Cambridge University at http://ssb22.joh.cam.ac.uk/scripts/access.

Filtered HTML Sample

Original HTML Input

<object data="mikey.gif">Mikey
Mouse</object>

Support Area

...<area href=/support.html>...

<a href="http://www.vorburger.ch/kissfp "

Filtered Output

<img src="mikey.gif"
alt="Mikey Mouse" >

<object data="mikey.gif">Mikey
Mouse</object>

Support Area

<img src=support_button.gif

alt="Support Area" >

...<area href=/support.html
alt="Support Area" >...

<a href="http://www.vorburger.ch/kissfp "
<img src=kissfp_button.gif
alt="http://www.vorburger.ch/kissfp" >

A complete example of filtered HTML showing all enhanced tags is given in the appendix.

http://ssb22.joh.cam.ac.uk/scripts/access

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

2.2 WINDOWS GUI FOR WEB AUTHORS

Below is a snapshot of how the Windows GUI front-end interface looks like. Note

that the idea clearly is to motivate HTML authors to set good ALT descriptions on all

images manually; there is no 'Suggest All' or 'Quick Run' feature to set all ALT

automatically with one click, and there is never going to be one for this reason.

Image 2: The GUI Windows interface for ALTifier

The usage of this tool is straighforward: Menu "Web/Open..." asks for the homepage, which is used as

starting point for crawling an entire site. The crawling is pretty quick and is typically a few seconds for

medium sites with up to a few hundred pages.

The upper left pane shows all elements. When one is selected, the lower left pane displays all tags us-

ings the element, and the right pane shows a preview of the element. The lower pane "ALT =" allows to

edit ALT, clicking on the "Combobox" presents a list with automatic suggestions.

8 http://www.vorburger.ch/projects/proxy (The author of this paper is not aware of the quality of the

wwwoffle proxy server which "inspired" this simple proxy server. It seems to work well for normal us-
age. For a serious application, it might be worth investigating integration with the Squid or Harvest Proxy
source code or W3C's HTTP library.)

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

2.3 UNIX CLI COMMAND FOR WEB AUTHORS

It could be of interest to organizational- and company websites who want to preserve a "corporate

identity" in their ALT, and enforce certain ALT on all of their "sub-sites" possibly maintained by differ-

ent departmental webmasters, to define these ALT in an XML file and have it automatically applied by a

batch tool.

The ALT_Report front-end tool is a first step, which reads and exports the ALT Registry:

mike@alinux:/home/mike/ALT/src > alt_report
ALTifier 0.9 --BETA-- http://www.vorburger.ch/projects/alt/
(C) Copyright 1998-1999 Michael Vorburger (alpha ware)

USAGE: alt_report [HOMEPAGE-CRAWL] [-noguess]

Crawls homepage (default: index.html) and linked pages for Tags to Altify
Does "ALT guessing" on the registry, say -noguess to prevent this.

ALT Registry Output in different formats: alt_info.txt, AltText.txt ,
alt_db.xml . alt_crawl.log has messages from the crawl engine not related
to ALT scanning.

XML

The XML format output of the alt_report tool is a beta based on a suggestion from a post in the

W3C-WAI-ER-IG mailing list. Here is a sample XML output this front-end application generates:

<?xml version="1.0"?>
<alt-repository>

<img-alt-use>
<img-src>clock.class</img-src>
 <alt-text>If you use a Java-enabled browser, you would see an animated clock.
 <as-used-in>linked.html</as-used-in>
</alt-text></img-alt-use>

<img-alt-use>
<img-src>images/anybrowser3.gif</img-src>
 <alt-text>Best viewed with ANY browser
 <as-used-in>index.html</as-used-in>
</alt-text></img-alt-use>

<img-alt-use>
 <img-src>images/bluebult.gif</img-src>
 <alt-text>*
 <as-used-in>index.html</as-used-in>
</alt-text></img-alt-use>

<img-alt-use>
 <img-src>images/fun_line.gif</img-src>
 <alt-text>__
 <as-used-in>index.html</as-used-in>
</alt-text></img-alt-use>

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

<img-alt-use>
 <img-src>linked.html</img-src>
 <alt-text>more ALT test samples
 <as-used-in>index.html</as-used-in></alt-text>
 <alt-text>More Examples (OBJECT # APPLET)
 <as-used-in>linked.html</as-used-in></alt-text>
 <alt-text>more ALT test samples
 <as-used-in>frameset.html</as-used-in></alt-text>
 <alt-text>Test Samples 2
 <as-used-in>frameset.html</as-used-in></alt-text>
</img-alt-use>

</alt-repository>

See chapter "Future" for a short discussion of actual XML parsing.

ALTText.TXT

The ALTText.txt format is compatible with the ALT Registry of the A-Prompt project; see

http://aprompt.snow.utoronto.ca/ This is a sample output of alt_report in alt_info.txt for-

mat:

Version 1
6 clock.class If you use a Java-enabled browser, you would see...
1 images/anybrowser3.gif Best viewed with ANY browser
1 images/bluebult.gif *
1 images/fun_line.gif ___
5 linked.html More Examples (OBJECT & APPLET)

http://aprompt.snow.utoronto.ca/

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

3 IMPLEMENTATION

3.1 ALT SCANNER & HTML TAGS TO ALTIFY

The HTML ALT "scanner" is technically spoken a Lexical Analyzer built using the LEX tool. It

makes extensive use of LEX's advanced features such as exclusive stacked states and could not be im-

plemented using regular expressions only. (The following is a brief overview only, please have a look at

the source code of module ALT_LEX.L shown in the last chapter of this paper for details.)

When reading HTML, ALT_LEX.L reports each tag with a structure of the form (type , src , alt ,

link) calling the following function, where link can be NULL for some tags, while src cannot:

ALT_Tag* tag_found(ALT_TYPE type, cchar* src, char* alt, cchar* link);

Each tag that links to a page which needs to be crawled to analyze an entire site calls this function:

void crawl_found(cchar* url);

 The following HTML tags are scanned for and supplied with an ALT or similar attribute suitable for

text based browsing. The same module & lexical analyzer is also used to (re)write HTML:

♦ maps to (type=IMG, img-src=src, alt=alt, link-url=NULL).

♦ is an image in-

side a link, often a button, and maps to (type=IMG-LINK, img-src=src, alt=alt, link-

url=url). Note that IMG is the only tag inside A, apart from maybe whitespace, but with no

text following or preceding the IMG tag, which we shall call a "pure IMG link" in this pa-

per.

♦ ... 9<IMG/OBJECT SRC=" button.gif" ALT= alt>... is a

non-pure link image, which returns type=IMG-LINK-NONPURE and src, alt & link as

above. The heuristics "ALT guess" engine distinguishes this case from the above.

♦ ... is a normal textual link that is reported as (type=A_TEXT,

img-src=url, alt=..., link-url=url) which allows the Guess engine to use this link's content if

an IMG or other element points to the same page.

9 In the content of an <A>... tag, "..." means any text, that is anything except all <tags> and

leading and trailing white space cut off. The same holds in the contents of <OBJECT> and <APPLET>.

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

♦ is a server side image map and is reported as a spe-

cial type: (type=IMG-ISMAP, img-src=src, alt=alt, link-url=NULL). This allows the heu-

ristics engine to set a standard ALT.

♦ <AREA HREF=url ALT= alt> client side image MAP maps to (type=AREA, img-

src=url10, alt=alt, link-url=url). Please note that ALT text for the full image map (IMG or

OBJECT with USEMAP) is still required to tell the user that the image is an image map.

♦ <INPUT TYPE="image" SRC= src ALT= alt [VALUE=]> maps to (type=IMG, img-

src=src, alt=alt, link-url=NULL). Note that type=IMG, as INPUT can be considered

equivalent to IMG for the purpose of determining ALT text.

♦ <APPLET [ALT= alt] (CODE=url | OBJECT=url)>...alt...</APPLET> maps to

(type=APPLET, alt=alt, img-src=url, link-url=NULL11). Note that the text is repeated in

the content of the APPLET tag, when the scanner is writing HTML, if not already present.

♦ <OBJECT [TITLE= alt] [DATA= url | CLASSID= url] > ...alt...</OBJECT>

maps to (type=OBJECT, img-src=url, alt=alt, link-url=NULL). Url is set to either DATA

or CLASSID, in this order of priority. ALT is repeated in the content for non HTML 4

aware browsers, with OBJECT nesting12 handled correctly, that is writing ALT only as the

content of the innermost OBJECT, and the TITLE attribute for the outermost OBJECT.

Link is non-NULL if OBJECT appears in A as described above.

♦ <FRAME SRC=url TITLE =title> and <IFRAME SRC=url TITLE =title> maps to

(type=FRAME, img-src=url, alt=title, link-url=NULL)

If no ALT attribute is found inside IMG, AREA, INPUT & APPLET tag, but a TITLE is present, the

TITLE is returned as ALT. Similarly, if no ALT attribute is present in INPUT/image , but VALUE is,

that is returned as alternative, but never written; because the LYNX documentation states: "Some docu-

ment authors incorrectly use an ALT instead of VALUE attribute for this purpose. Lynx 'cooperates' by

treating ALT as a synonym for VALUE when present in an INPUT tag with TYPE="image". (This seems

to be inconsistent with the latest HTML 4.0 specification.) Please note that this concerns retrieving ALT

only. When setting ALT the lexical analyzer will only write the correct ALT or TITLE attribute.

10 The img-src of an AREA could theoretically be (temporarily) created by extracting/cutting the rele-

vant part of the corresponding MAP/IMG/OBJECT. This could be of help for OCR ALT heuristics.
11 If the APPLET has a special PARAM that denotes a linked URL, then that is used as link-url in-

stead NULL. For now, this only recognizes a FrontPage proprietary notation.

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

Similarly to accepting TITLE instead of ALT, one could think of interpreting the NAME, ID or

CLASS attributes. This was not implemented, because these attributes are of technical nature and are

unlikely to provide a good textual alternative. Also, one could think of reading the beginning of a LONG-

DESC file for ALT. This was not implemented either, as it is unlikely an advanced HTML 4 author sets

LONGDESC but not ALT.

If the lexical analyzer finds something like , notice the ALT attribute with no

value, it returns ALT="". When writing, the attribute is 'completed' and output as full ALT="".13

Further points not implemented in this project, but possible as well:

♦ A server side image map could be queried for links by simulating clicks on a pixel raster.

♦ The <NOFRAMES>long-html-alt</NOFRAMES> tag inside <FRAMESET> could be sup-

ported, and/or it's absence be warned in the author mode front-end tools.

♦ <FIELDSET> tag that does not contain LEGEND. This new element FIELDSET allows

authors to group boxes around form INPUT control. It is especially helpful to people with

visual disabilities who may be accessing the form using a screen reader. However, for the

FIELDSET to work properly, a LEGEND element, containing the header text for the

grouping of controls must be added as the first element within the FIELDSET element.

♦ <TEXTAREA> can often present a problem for screen reader users because their labels,

that tell users what to put in the box, may be placed on another line. To correct this prob-

lem, it is recommended that the field name (i.e. comments, etc.) be added as the default

field text for edit boxes. For the TEXTAREA element the default text is simply the text

appearing between the element’s start and end tags. This serves to clarify the function of

edit boxes whose text labels may have been cut off by the screen. A NAME should also be

defined for both types of elements, especially if default text is not being used.

♦ "Cross-frame" images, meaning images linked to another frame. This is generated for ex-

ample by MS PowerPoint, and is difficult to handle, because of the frame and the fact that

there is no IMG tag, but just an image directly loaded into a frame. (This is deprecated use

according to the example and comment in §2.11.5 of [WAI-GL-TECHNIQUES].)

12 In OBJECT nesting, the most multimedia intensive representation (ex. Java applet) is placed first.

Then another OBJECT containing a different representation (ex. video or image) is placed between the
start and end tags of the first OBJECT. Finally, a plain text description is placed between the start and end
tags of the last representation, to be accessed by users who are blind or using text only browsers.

13 MS FrontPage 'converts' ALT="" to ALT. For Lynx, these two constructions are not identical. For
example, <A ...> is displayed as [LINK] , whereas <A ...><IMG ...
ALT=""> is correctly suppressed.

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

♦ Netscape specific <ILAYER> tag and multimedia <EMBED> tags.

3.2 ALT REGISTRY (STORAGE BACK-END MODULE)

ALT_Tag

ALT_Element URL

(1:n)

(1:1)

 alt : string
 type : ALT_TYPE

(0:1)

(1:n)

(1:1)

(1:n)

ALT_Doc
 URL

 crawled

link onPage

ALT_Element is an "ALTifiable"

HTML "element" that can have alternative

textual attribute or content, such as a GIF

file or referenced page. This element is

used in the corresponding ALT_Tag(s):

ALT_Tag is one specific occurrence of

an ALTifiable ALT_Element in one of

following HTML Tags: IMG, AREA,

INPUT, APPLET, OBJECT, FRAME:

struct ALT_Tag
{
 ALT_Element* element
 char* alt;
 ALT_TYPE type;

 ALT_Doc* onPage;
 ALT_Doc* link;

 // ...
}

ALT_Element, ALT_Tag and ALT_Doc are integrated an in ALT_DB :

struct ALT_DB
{
 List<ALT_Element> Elements;
 List<ALT_Doc> Docs;

 ALT_Tag* Store(cchar* docurl, ALT_TYPE type, // called by
 cchar* url, cchar* alt, cchar* link); // LEX Scanner

 ALT_Element* Lookup(cchar* element_url);

 int Crawl(cchar* local_homepage); // called by eg. GUI Front-End
 int ProcessDoc(FILE* in, FILE* out); // called by eg. Filter Front-End

 void Guess(); // Entry point for ALT_Guess module
};

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

3.3 ALT GUESS HEURISTICS (HEURISTICS BACK-END)

The class member function ALT_DB::Guess() searches and enhances all tags in the Registry with

no ALT or similar attribute already present, or with one present which is obviously automatic14 and there-

fore not very informative. Alternatively a front-end such as the GUI tool can itself directly call the rele-

vant function for one tag only:

alt_guess(ALT_Tag* tag, char* alt_Suggestions[], int max_Suggestions);

The function can construct and return a list with several ALT Suggestions. When acting as a HTML

filter or proxy server, only one suggestion is requested and used. The following "heuristics" are used to

"guess" ALT text, depending on the type reported by the lexical analyzer, each in order of priority. (This

is a brief overview only, please have a look at the source code of module ALT_GUESS.CPP shown in

the last chapter of this paper for details.)

Type = ALL

♦ For pure A-IMG/OBJECT-/A link, or AREA/FRAME, so for all elements which are a

link, return the ALT text of this link as used in other occurrences, possibly with other ele-

ments and tags, if any.

♦ Check if ALT text for the element is already defined somewhere, lookup in ALT Registry.

Type = IMG-LINK-NONPURE

♦ For non pure IMG links, that is if there is some text between the A, IMG and /A tags, re-

turn an empty ALT="" . The reason for this is that such an image is likely to be a small

inline decoration which, if it disappears in text browsing, is no loss of information as the

existing link text suffices.

Type = IMG & OBJECT

♦ Set ALT="------" for graphical rulers. A graphical ruler decoration is identified if

height > 1, width / height >= 10, width > 100, height < 50. The number of '-' characters

is approximated dividing the pixel width by 10, but maximal 65.

♦ Set ALT="* " for graphical bullets. A graphical bullet decoration is detected if height >

5, width > 5, width / height <= 4, height < 30, width < 30.

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

♦ Set an empty ALT=""15 if the IMG is "just" a decorative spacer. A spacer is recognized if

the image has width or height = 1. (Checking for actual 1x1 GIF transparency or very

small file size is not worth the trouble and waste of bandwidth.) The same ALT="" is ap-

plied to images with width or height = 0, as it can occur with special constructions such as

external counter images etc, all of which are certainly of no interest to text-only agents.

♦ Return the src filename, cut off the path and extension of the file, replacing '_' and '-' by a

blank space. This is based on the hope that webmasters or graphics designers give mean-

ingful names to their images, like /images/help.gif (ALT="help") etc.

Type = APPLET and OBJECT

♦ Return "JAVA APPLET: url" resp. "OBJECT: url" as default.

Type = IMG-ISMAP

♦ Return "[SERVER SIDE IMAGE MAP]" as default for an IMG-ISMAP. An author

should overwrite this suggestion and set an empty ALT="" if there are alternative textual

links on that page.

It is ensured that empty ALT="" is never set inside a pure link, for none of the above points. Please

note that this tool will never insert ALT text or comment such as "Place Alt text here" or anything similar

as this is completely useless.

14 An automatically generated ALT is detected if it contains the word "byte", "gif", "jpeg", as tools

such as MS FrontPage would often insert these when simply setting ALT=SRC.
15 http://www.w3.org/WAI/GL/wai-gl-techniques-19980918.html#spacer-images

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

3.4 ALT_FILTER IMPLEMENTATION (FRONT-END)

The implementation of the ALT_Filter is very simple and based on the other modules:

 FILE* fin = fopen(argv[1], "r");
 if (fin == NULL)
 return 1;

 theDB.ProcessDoc(fin, NULL); // first pass

 theDB.Guess();

 rewind(fin);
 theDB.ProcessDoc(fin, stdout); // second pass

 fclose(fin);

Notice the two "passes" used: First we read and analyze and HTML document, whilst we fill the Reg-

istry. Then we enhance the Registry by Guessing. Then we read again and at the same time write, using

additional ALT now present in the Registry.

See the note about a "non re-spawning model" in the chapter "Future" for possible improved guessing

by a "site-wide" filter which retains the Registry between invocations of the filter.

3.5 ALT_GUI IMPLEMENTATION (FRONT-END)

The Windows GUI application as shown in a previous chapter was implemented using the C++

Builder toolkit by Inprise, formerly Borland. A discussion of it's details would lead out of the scope of

this project report.

Note that, apart from with a lot of (great!) graphical RAD buzz called VCL around it, the compiler

underlying C++ Builder is a standard C++ compiler, former Borland C++ in fact. This made it very easy

to include the ALT back-end engine.

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

4 FUTURE EXTENSIONS & DIRECTIONS

4.1 EMBEDDING THE ALT_FILTER IN MORE APPLICATIONS

The ALT_Filter could be embedded into various other applications using an HTML filter. Further

front-ends could consist of a CGI interface, an NSAPI (Netscape), ISAPI filter (M$ IIS) or any other

similar technology.

At the time of writing, dicussions were under way to direclty integrate ALT_Filter in the source code

of the Accessibility Enhancement gateway (CGI) by Silas Brown from Cambridge University; see

http://ssb22.joh.cam.ac.uk/scripts/access, http://www.accu.org/access/public/accessinstall.htm,

or http://ban.joh.cam.ac.uk/~ssb22/access.html

Direct integration into a browser's rendering engine (ALT) would be possible: This tool can currently

not be used as a Netscape/Internet Explorer browser plug-in, but MS IE is said to have a COM hook to

allow filtering.

Of particular interest would be integration with the LYNX text browser

and/or implementation of an ALT Enhancing Apache Filter Module, provided

there is interest from the development community behind these two open source projects.

Another strand for possible follow-up is speed optimization: As it is well known, a traditional CGI or

proxy which calls an external binary looses a lot of time by process (re)spawning at each invocation.

Switching to a technology like Fast-CGI16 would be interesting in this light.

ALT_Filter would benefit very much from a "non re-spawning" model in another, non speed-related,

way as well: The guessed ALT tags would gradually get better, because if permanently loaded, all pages

and tags scanned so far could be added to the Registry which would gradually produce better results for

subsequent pages & guessing because it maybe already saw the element and the required ALT. Note that

this is the reason why ALT_Filter and ALT_Report do not produce the same results, ALT_Report is

better because it can use information on a "site-wide" basis, not just the current page.

16 http://www.fastcgi.com

http://ssb22.joh.cam.ac.uk/scripts/access
http://www.accu.org/access/public/accessinstall.htm
http://ban.joh.cam.ac.uk/~ssb22/access.html

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

4.2 EXTENDING ALT_CLI AND XML PARSING

The ALT_CLI front-end application is very simple so far and more of a "proof of concept" than a use-

ful application, because it only exports the ALT_Registry in XML, but does not allow any importing so

far.

This could easily be done by allowing an XML parser to read an ALT.XML file back into the ALT

Registry. This could be achieved by using one of the now many available XML parsers or by program-

ming a simple XML reader ourselves.

4.3 EXTENDING THE SCANNER

The ALT scanner is pretty powerful and complete given it's ability to analyze constructions like

HTML 4.0 nested OBJECT etc. A few idea for extensions remain anyway:

♦ It was thought about allowing to set TITLE and maybe even LONGDESC additional to

ALT. The idea has not yet been implemented because end users could get confused and the

front-ends would get more complicated. (Note that TITLE is supported for OBJECT &

FRAME which do not have ALT.) In a future version an additional field (GUI) to set the

LONGDESC file of an image might make sense though.

♦ HTML 4.0 allows <TABLE Summary=%Text> which provides a summary of the table's

purpose and structure, and could be scanned and allowed for editing as well.

♦ <NOFRAMES>...</NOFRAMES> inside <FRAMESET> and other tags mentioned in

§3.1 could be supported as well.

♦ A new "start of line" flag could indicate if an IMG occurred at the "beginning of a line" (or

cell etc) to facilitate ALT_Guess's decision if an IMG is a graphical bullet.

4.4 EXTENDING ALT_GUESS

♦ Note that we don't yet fetch other pages to retrieve a document's title for using it as ALT in

a link. We rely only on links to pages that we already scanned or will scan in a short mo-

ment, when crawling. A future extension could provide a method

ALT_Doc::Get_Title() to retrieve a link title from a document's TITLE, maybe

having to read local file or do an HTTP fetch. It could use the Document Link Title idea

outlined in an appendix to this paper.

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

♦ Another idea is to make the guessing of graphical bullets more reliable by checking for a

"start of line" flag and maybe also counting the number of occurrences, e.g. only if more

than once in the same document.

♦ If the image has a comment built in the image file, this comment could be used as ALT

text. To the author's current knowledge GIF and PNG17 can have comment, while JPEG

cannot.

♦ Could request (query) ALT text from and submit new descriptions to some kind of "ALT

text server", yet to be set up, using PICS and/or RDF. The basic idea of this is outlined in

http://www.w3.org/WAI/altserv.htm.

♦ OCR, using an API interface to "Xerox Textbridge" or a similar program if installed. This

is likely to succeed for IMG-LINK buttons which show "Home" etc.

A new option could allow to terminate all ALT text with a punctuation ('.'). This seems to be helpful

to screen readers, causing them to briefly pause, according to comments expressed on a mailinglist.

4.5 DEVELOPING ALT_GUI INTO SHAREWARE

The author is currently thinking of developing the ALT_GUI application into a Shareware tool.

There could be an interest for a commercial shareware version if the registration fee is kept relatively

low, that is around $10-$20; the author has some previous experience18 in this market. Notice that the

ALT_Filter repair tool should and will remain free though.

17 See http://www.w3.org/TR/PNG-Chunks.html#C.tEXt
18 http://www.vorburger.ch/kissfp

http://www.w3.org/WAI/altserv.htm

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

5 ACKNOWLEDGEMENTS

I first want to thank my parents and friends for everything they gave to me.

A lot of inspiration and feed-back for this project and tool has been drawn from and given by the

W3C-WAI-ER-IG (World Wide Web Committee/Web Accessibility Initiave/Evaluation and Re-

pair/Interest Group) mailing list and phone conferences, where the author of this paper actively partici-

pated. I remain particularly thankful to: Al Gilman <asgilman@access.digex.net>, Chris Ridpath

<chris.ridpath@utoronto.ca>, Daniel Dardiller <Daniel.Dardailler@sophia.inria.fr> and Leonard R.

Kasday <kasday@acm.org> of the Institute on Disabilities/UAP at Temple University in Philadelphia

PA.

The author of this paper also passively participated in the W3C-WAI-IG (different from –ER–) and

read messages related to the topic of this project, and I remain thankful for some interesting points

brought up in that list as well.

I would like to thank my colleague from university Julien Merçay <jmercay@scdi.org> for the idea

of possibly integrating ALT_Filter in an Apache Module.

Last but not least, I wish to thank the supervisor of this project, Afzal Ballim <ballim@di.epfl.ch>

from the MEDIA Research Group of the Laboratoire d'Informatique Théorique (LITH) of the École Po-

lytechnique Fédérale de Lausanne (EPFL) in Switzerland.

mailto:asgilman@access.digex.net
mailto:chris.ridpath@utoronto.ca
mailto:Daniel.Dardailler@sophia.inria.fr
mailto:kasday@acm.org
mailto:jmercay@scdi.org

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

6 REFERENCES

[1] "Textual Equivalents - techniques to be used by tools taking HTML as input and trying to come up

with textual alternatives for all sort of visuals lacking their native description", Daniel Dardailler,

based on comments received on the WAI ER IG list. http://www.w3.org/WAI/ER/text-equiv.htm

[2] "WAI Accessibility Guidelines: Page Authoring", G. Vanderheiden, W. Chisholm, and I. Jacobs, eds.

Available on-line at: http://www.w3.org/TR/WD-WAI-PAGEAUTH

[3] "WAI Accessibility Guidelines: Page Authoring Techniques", G. Vanderheiden, W. Chisholm, and I.

Jacobs, eds. Available on-line at: http://www.w3.org/WAI/wai-gl-techniques

[4] "WAI Accessibility Guidelines: Authoring Tools", J. Treviranus , J. Richards, N. Sicchia, I. Jacobs.

Available on-line at: http://www.w3.org/WAI/AU/WAI-AUTOOLS.html

[5] "WAI User Agent Guidelines", J. Gunderson, I. Jacobs. Available on-line at:

http://www.w3.org/WAI/UA/WD-WAI-USERAGENT/

[6] "HTML 4.0 Recommendation", D. Raggett, A. Le Hors, and I. Jacobs, eds. Available on-line at:

http://www.w3.org/TR/REC-html40/

[7] For the graphical ruler/bullet/spacer decoration recognition rules: "HTML++ Class Library with

HTML Parser – TextOnly Filter", Michael Vorburger, http://www.vorburger.ch/projects/textonly

[8] "The Three -tions of Accessibility-Aware HTML Authoring Tools", J. Richards. Available on-line at:

http://www.utoronto.ca/atrc/rd/hm/3tions.htm

[9] "WAB: World Wide Web Access for Blind and Visually Impaired Computer Users", a proxy server

that inserts list of links and headings, among others.

http://www.inf.ethz.ch /department/IS/ea/blinds/

[10] Microsoft on Accessibility, at http://www.microsoft.com/enable/

[11] "Lex und Yacc", Helmut Herold, Addison-Wesley

http://www.w3.org/WAI/ER/text-equiv.htm
http://www.w3.org/TR/WD-WAI-PAGEAUTH
http://www.w3.org/WAI/wai-gl-techniques
http://www.w3.org/WAI/AU/WAI-AUTOOLS.html
http://www.w3.org/WAI/UA/WD-WAI-USERAGENT/
http://www.w3.org/TR/REC-html40/
http://www.vorburger.ch/projects/textonly
http://www.utoronto.ca/atrc/rd/hm/3tions.htm
http://www.inf.ethz.ch/department/IS/ea/blinds/
http://www.microsoft.com/enable/

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

7 APPENDIX

7.1 COPY OF AN INTRODUCTION TO THE "A-PROMPT" PROJECT

The following paragraphs are copied from the 'A-Prompt' Project Proposal, at the time of
writing found at http://aprompt.snow.utoronto.ca/docs/a-prompt.doc – This text is

reproduced here as it gives a good overview into why Web Accessibility
Enhancement tools are needed.

"Many Internet users have disabilities and rely on an adaptive technology system in order to access

web pages. Over the last few years there have been many advances in improving the web compatibility

of client-side access technologies such as screen readers, magnifiers, and alternative mouse systems.

However, server-side information, the web pages themselves, need to adhere to HTML standards and may

need HTML accessibility provisions in order to optimize access to users with disabilities.

The Internet has evolved into a system where the general consumer can easily create and post their

own web pages. The World Wide Web Consortium (W3C) has taken steps in the right direction by add-

ing accessibility provisions within the HTML, but this isn't necessarily enough. Many web designers use

HTML editors such as Microsoft Front PageTM, Adobe PageMillTM and SoftQuad HoTMetaL ProTM and

are unaware that HTML standards exist, let alone provision for accessibility.

One method of increasing the accessibility of the millions of web pages designed each year is to inte-

grate HTML accessibility validation technology into commercial HTML authoring tools. This technol-

ogy would be analogous to spell checkers and grammar checkers found in today's word processors. It

would prompt users with pertinent information regarding HTML grammar and accessibility and offer

suggestions for improvement. Many repetitive tasks would be automated, such as the addition of ALT-

text or the replacement of server-side image maps with client-side image maps. The mere presence of

such a system would increase general consumer awareness of access issues, regardless. Authoring tools

with accessibility support will also help companies and academic institutions publish electronic informa-

tion that comply with ADA and other disability legislation.

(...) Sidewalk curbcuts were originally installed to accommodate people in wheelchairs but they are

now taken for granted by everyone, including mothers with baby carriages, shoppers with carts and rol-

lerbladers. Electronic curbcuts also exist for technology. Accessible HTML lends to grammatically cor-

rect HTML which generate pages that are displayed properly regardless of browser or platform. Accessi-

ble HTML also ensures pages load quicker and transfer more easily between modalities, for user-agents

other than desktop computers. Validation technology will enforce universal design principles that will

benefit all web users."

http://aprompt.snow.utoronto.ca/docs/a-prompt.doc

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

7.2 DOCUMENT LINK TITLE (IDEA)

This is an idea of how to determine a document's "link title" for using it as ALT in for
example an IMG link. See chapter "Future/Extending ALT_Guess" for details.

First, the TITLE tag is regarded. This document link title could be slightly different from TITLE, and

is (can) be stored in the document in some META tag. It could be edited by the end user in author mode.

This META tag could be set when a textual link to the document is found, allowing eg. image map links

where this information is missing to "inherit" it from textual links.

If a TITLE contains any strings of the form ' – ' (space, dash, space) then the string until the occur-

rence of the such string is used as ALT. This is to eliminate long and repeated site descriptions in titles

such as "Encountered Problems – SumInfo – Projects – Michael Vorburger's Homepage". This feature is

not of first priority and can be turned off in the configuration. (If a "reverse site descriptive" title such as

"Michael Vorburger's Homepage – Projects – SumInfo – Encountered Problems" is used, this could be

recognized by checking if the start is always the same, namely the site's name.)

If no TITLE is found, the document's first H1 is used as ALT, if no H1 is present, the document's H2

is used, and so forth. Some maximum length (eg. 100-150 characters, or less?) might be imposed on the

text. Cutting is always done at word borders. If no Hx is found, a short title is extracted from text that

follows the BODY tag, taking eg. 100-150 (or less?) characters and cutting at word borders. If the link's

A/HREF tag contains a # named destination, the TITLE check could be skipped and only the Hx check

from the named destination, maybe a bit earlier, on, should be done. Another possibility would be to

check <META SUMMARY> tags.

If the target document of a link is a frame set, the above procedure is executed on the first frame's

content, or the frame named "main" if any, or the NOFRAME text if it seems to be reasonable. A reason-

able NOFRAME text is one not containing more than 2-3 of the following keywords in the first 300 char-

acters: "browser, no, not, please, upgrade, update, download, netscape, ns, ie, explorer". (This feature is

not of first priority.)

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

7.3 COMPLETE ALT_FILTERED HTML EXAMPLE

<h2>A. IMG - Simple, in links, pure & non-pure</h2>

<p>1. A simple IMG without ALT, not linked nor used anywhere else:

(Guess using filename from IMG-SRC URL, instead [IMAGE])

<p>2. Button in pure link, that is with empty content, absolute link:
<img src="images/kissfp.gif"

border=0 alt="http://www.vorburger.ch/kissfp/" > (Guess using full URL
of A-REF, not IMG-SRC, instead [LINK].)

or relative link:
<img src="images/kissfp.gif" border=0

alt="http://www.vorburger.ch/kissfp/" > (Guess using directory of A-
REF, not IMG-SRC, instead [LINK]. Using directory because 'index' is
pretty useless...)

<p>3. An IMG with ALT already set:
<img src="images/anybrowser3.gif" width=88 height=31 border=0 alt="Best

viewed with ANY browser"> and using this IMG again, but forgot to set
ALT:

<img src="images/anybrowser3.gif" width=88 height=31 border=0 alt="Best
viewed with ANY browser " > (Guess using previous tag, retrieved from
ALT_Registry, instead [IMAGE])

<p>4. Inline icon in non-pure link: Go to
http://www.yahoo.com<img src="images/leave-site.gif" border="0"
alt="" > (Guess ALT="" because link content is not empty, instead
[LINK])

See more ALT test samples on the next page.

<p>5. Button in pure link:

(Guess using link's content text from other occurence of link, retrieved

from ALT_Registry, instead [LINK])

<h2>B. Bullets & HR</h2>

 A bullet (Guess "*
" using bullet heuristic rules, instead [IMAGE])

 Another
bullet (heuristics is based on image size)

<p>The graphical horizontal ruler is an IMG and not a HR tag. (Guess "____"
using ruler heuristic, based on size, variable width)

<p><center><img src="images/hr-construction.gif" width=590 height=8 border=0
alt="__" ></center>

<h2>C. Specials</h2>

1. Transparent spacer GIF, used to enforce table cell width etc.

(Guess ALT="" because height=1, instead [IMAGE])

<p>2. Special Counter IMG with width=0 & height=0:
<img src="http://www.counter.com/cgi/counter.gif" width="0" height="0"

alt="" > (Guess ALT="" because width=0 & height=0, instead [IMAGE])

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

<h2>D. INPUT</h2>

<form action="cgi-bin/form.pl" method="POST" enctype="application/x-www-
form-urlencoded">Your name:

<input type="text" name="name" VALUE="Michael" alt="Michael" >
<input type=image src=images/go.gif name=submit alt="go" >
</form>

<h2>E. APPLET</h2>

<p>An applet with no ALT:
 <applet code="animation.class" codebase="_fpclass/" width="120"

height="24" alt="JAVA APPLET: animation" >JAVA APPLET: animation </applet>

<p>An applet with ALT attribute, but no pseudo-ALT in APPLET content:
 <applet code="fphover.class" codebase="_fpclass/" width="120"

height="24" alt="Java Applet, no Alt between APPLET & /APPLET">
 Java Applet, no Alt between APPLET & /APPLET </applet>

First sample page

<p>An applet which is a link, eg. FrontPage's "Hover buttons" :
 <applet code="fphover.class" codebase="_fpclass/" width="120"

height="24" alt="Java Applet, no Alt between APPLET & /APPLET" >
 <param name="text" value="Hover-Button">
 <param name="color" value="#000080">
 <param name="hovercolor" value="#0000FF">
 <param name="textcolor" value="#FFFFFF">
 <param name="effect" value="glow">
 <param name="url" value="index.html" valuetype="ref">
 First sample page </applet>

<h2>G. OBJECT nested</h2>

<p> <!-- First, try the Python applet -->
<OBJECT classid="http://www.observer.mars/the_earth.py"
 title="The Earth as seen from space.">
 <!-- Else, try the MPEG video -->
 <OBJECT data="the_earth.mpeg" type="application/mpeg">

<!-- Else, try the GIF image -->
 <OBJECT data="images/the_earth.gif" type="image/gif">

<!-- Else render the text -->
 The Earth as seen from space.

</OBJECT>
 </OBJECT>
 </OBJECT>

<P>A simple OBJECT with no TITLE, no neested textual content:
<OBJECT classid=http://www.miamachina.it/analogclock.py
 title="OBJECT: http://www.miamachina.it/analogclock.py">
 OBJECT: http://www.miamachina.it/analogclock.py
</OBJECT>

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

8 SOME SOURCE CODE

Following is the source code of some core modules of ALTifier. Please note that important
auxiliary modules and functions are not shown to keep this paper short.

This project consists of >3000 lines of code, only ca. 1000 (1/3) of which are shown here!

8.1 ALT_LEX.L

/* ===
 * FILE: alt_lex.l - Module SCANNER, written in (F)LEX
 * PROJECT: ALTifier, see http://www.vorburger.ch/projects/alt
 *
 * LAST MODIFIED: February 14, 1998
 * CREATED: December 10, 1998
 *
 * AUTHOR: Michael Vorburger [mike@vorburger.ch]
 *
 * COPYRIGHT (C) 1998 / 1999 BY MICHAEL VORBURGER (ALPHA WARE)
 *
 * Do not distribute with or (re)use this source code
 * without prior permission of the author.
 * ===
 */

%{
 #include <string.h>
 #include "alt.h"
 #include "../../../shared-src/microsoft_borland.h"
 #include "../../../shared-src/webtools.h"
 #include "../../../shared-src/pathfoos.h"

 void ECHO_ALT(); // FORWARD
 void ECHO_TITLE(); // FORWARD
 void object_applet_close(); // FORWARD
 void a_content_close(); // FORWARD

 #ifndef CRAWL
 inline void crawl_found(cchar* url) { return; };
 #endif

 /* IF GUI
 #define YY_FATAL_ERROR(msg) yy_gui_fatal_error(msg)
 char yy_gui_fatal_error(char msg[]) { MsgBox ... }
 */
%}

 /* ---
 * LEX commands and macro definitions
 */

%option case-insensitive
%option stack
%option never-interactive

 // #define YY_NEVER_INTERACTIVE 1
 #define PUSH yy_push_state
 #define POP yy_pop_state

%x INIMG
%x INIMG_ISMAP
%x INAREA
%x ININPUT

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

%x INAPPLET
%x APPLET_CONTENT
%x INAPPLET_PARAM
%x INOBJECT
%x OBJECT_CONTENT
%x INFRAME

%x URL
%x COMMENT
%x PURE_CHECK
%x PURE_CHECK_IMG
%x ANY_OTHER_TAG

 /* WhiteSpaces+, Optional WS, one STRing, NotGreaterThans*, NotQuotes*
 STR is a string in "double quotes" or 'single quotes' or nada (untested)
 OQT is an Optional QuoTe, either double or single or none (optional)
 TAG is the start of a tag, CTAG is the end of a TAG. IMPORTANT: Always use
 eg. {TAG}A{WS} or {TAG}A{ETAG} because otherwise APPLET or AREA is matched
 as well!
 */

WS [\n\t\r\x0A\v\f]+
OWS [\n\t\r\x0A\v\f]*
STR {OWS}(\"[^\"]+\")|(\'[^\']+\')|([^ \n\t\r\x0A\v\f\>]+)
NGT [^\>]*
NQT [^\"\'\><#]*
OQT [\"\']?

TAG "<"{OWS}
ETAG ({OWS}">")|({WS}{NGT}">")
 /* ETAG must have WS/NGT and not OWS/NGT to prevent
 matching /AREA or /APPLET in eg. {TAG}"/a"{ETAG} */

 /* ---
 * LOCAL VARIABLES (flags, counters, string buffers etc)
 */
 const int LEN = 256; /* LEN (max) of most strings below */

 static bool pure_A; /* Is the <A> tag "pure" = no text? */
 static int in_OBJECT; /* Inside an <OBJECT> tag, how deep neested? */
 static bool OBJECT_closed; /* Inside an <OBJECT> tag, how deep neested? */
 static char src[LEN]; /* Value of the SRC attribute, IMG etc. tags */
 static char alt[LEN]; /* Value of the ALT attribute, all tags */
 static char href[LEN]; /* Value of the HREF attribute, all tags */
 static bool input_image; /* Is this a type="image" INPUT tag? */
 static char app_param_href[LEN]; /* "Hidden" HREF in an APPLET's PARAM? */
 static bool app_param_hasref; /* Is this PARAM (maybe) a HREF? */
 static char tag_content[LEN]; /* Content of APPLET/OBJECT tag */
 static char* pc_tag_content; /* dynamic pointer to the previous */
 static int img_width, img_height; /* IMG's width= & height= attributes */
%%

 /* ===
 * LEX RULES
 *
 * This is executed every time yylex() is called:
 */
 href[0] = NAC;/* Important to do it here, because NOT in A, but in /A. */
 in_OBJECT = 0;
 base_external = false;
 BEGIN(INITIAL); /* yyrestart() does *not* reset start condition */

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

 /* ---
 * ALT Rules
 */

{TAG}a{WS}{NGT}href={OQT} { ECHO; PUSH(PURE_CHECK); PUSH(URL); pure_A = true;
 alt[0] = NAC; src[0] = NAC;
 pc_tag_content=tag_content; *pc_tag_content = '\0'; }

<PURE_CHECK>{
 [^\><]*">" { ECHO; /* Eat up any still open (A) tag, but
 don't open new one. */ }
 {TAG}img{WS} { ECHO;
 if (src[0] != NAC) { // Maybe not the first IMG?
 // then we have to "register" now because
 // otherwise we would overwrite the previous
 a_content_close();
 tag_found(pure_A ? IMG_LINK : IMG_LINK_NONPURE,
 src, alt, href);
 alt[0]=NAC; src[0]=NAC; // leave href unchanged!
 pure_A = false; // pure_A makes a difference
 // for Guessing only, dummy.
 // As we alreay have an IMG, it's ALT will be

 // non-NULL, and the second would be okay if NULL.
 }
 PUSH(PURE_CHECK_IMG);
 }
 {TAG}"/a"{ETAG} { a_content_close();
 if (src[0] != NAC) /* Did any IMG/OBJECT occur? */
 tag_found(pure_A ? IMG_LINK : IMG_LINK_NONPURE,
 src, alt, href);
 object_applet_close();
 if (!pure_A || tag_content[0]) /* text A-link */
 tag_found(A_TEXT, href, tag_content, href);
 ECHO; POP(); href[0] = NAC; }
 {TAG} { ECHO; PUSH(ANY_OTHER_TAG); /* pure_A unchanged */ }
 .|\n { ECHO; if ((pc_tag_content - tag_content) < LEN)
 *pc_tag_content++ = *yytext; }
}

<ANY_OTHER_TAG>{NGT}">" { ECHO; POP(); }

<PURE_CHECK_IMG>">" { POP(); tag_lookup(IMG_LINK, src, alt, href);
 ECHO_ALT();
 /* Cannot tag_found() yet; delayed for pure-check */ }

<INIMG,INIMG_ISMAP,INAREA,ININPUT,INAPPLET,PURE_CHECK_IMG>{ /* Don't ECHO alt */
 {OWS}alt{OWS}={STR}{OWS} { fputs(" ", yyout); strcpquote(alt, yytext, LEN); }
 {OWS}alt{OWS} { fputs(" ", yyout); alt[0] = '\0'; }
 {OWS}title{OWS}={STR}{OWS} { fputs(" ", yyout); if (alt[0] == NAC)
 strcpquote(alt, yytext, LEN); }
 {OWS}title{OWS} { fputs(" ", yyout);
 if (alt[0] == NAC) alt[0]='\0'; }
 src{OWS}={STR} { strcpquote(src, yytext, LEN); ECHO; }
 width{OWS}={STR} { ECHO; char tmp[5];

 strcpquote(tmp, yytext, 5); img_width = atoi(tmp); }
 height{OWS}={STR} { ECHO; char tmp[5];
 strcpquote(tmp, yytext, 5); img_height = atoi(tmp); }
}

<INFRAME,INOBJECT>{
 {OWS}title{OWS}={STR}{OWS} { fputs(" ", yyout); /* Don't yet ECHO */
 strcpquote(alt, yytext, LEN); }
 {OWS}title{OWS} { fputs(" ", yyout); alt[0] = '\0'; }
 {OWS}alt{OWS}={STR}{OWS} { fputs(" ", yyout); if (alt[0] == NAC)

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

 strcpquote(alt, yytext, LEN); }
 {OWS}alt{OWS} { fputs(" ", yyout); if (alt[0] == NAC)
 alt[0]='\0'; }
}

{TAG}img{WS} { ECHO; PUSH(INIMG); alt[0] = NAC;
 src[0] = NAC; img_width = img_height = -1; /* NAV */ }
<INIMG>ismap { ECHO; POP(); PUSH(INIMG_ISMAP); }
<INIMG>">" { POP(); tag_found(IMG, src, alt, NULL, img_width, img_height);
 ECHO_ALT(); }
<INIMG_ISMAP>">" { POP(); tag_found(IMG_ISMAP, src, alt, NULL); ECHO_ALT(); }

{TAG}area{WS} { ECHO; PUSH(INAREA); alt[0]=NAC; href[0]=NAC; }
<INAREA>{
 href{OWS}={STR} { ECHO; strcpquote(href, yytext, LEN); crawl_found(href); }
 ">" { POP(); tag_found(AREA, href, alt, href);
 ECHO_ALT(); href[0] = NAC; }
}

{TAG}input{WS} { ECHO; PUSH(ININPUT); alt[0] = NAC;
 src[0] = NAC; input_image = false; }
<ININPUT>{
 type{OWS}={OWS}"image" { input_image = true; ECHO; }
 {OWS}value{OWS}={STR}{OWS} { if (alt[0] == NAC)
 strcpquote(alt, yytext, LEN);
 ECHO; }
 ">" { if (input_image)
 tag_found(IMG, src, alt, NULL);
 POP(); ECHO_ALT(); }
}

<INITIAL,PURE_CHECK>{
 {TAG}applet{WS} { ECHO; PUSH(INAPPLET); alt[0] = NAC; src[0] = NAC;
 pc_tag_content = tag_content; *pc_tag_content = '\0'; }
}
<INAPPLET>{
 code{OWS}={STR} { ECHO; strcpquote(src, yytext, LEN); }
 object{OWS}={STR} { ECHO; strcpquote(src, yytext, LEN); }
 ">" { tag_lookup(APPLET, src, alt, NULL); ECHO_ALT();
 POP(); PUSH(APPLET_CONTENT); }
}

<APPLET_CONTENT,OBJECT_CONTENT>{
 {TAG}object{ETAG} { ++in_OBJECT; ECHO; }
 {TAG}"/object"{ETAG} { if (!OBJECT_closed) {
 object_applet_close();
 tag_found(OBJECT, src, alt, href);
 src[0] = NAC;
 if (alt[0] != NAC) fputs(alt, yyout);
 OBJECT_closed = true;
 }
 if (--in_OBJECT == 0)
 POP();
 ECHO; }
 {TAG}"/applet"{ETAG} { object_applet_close();
 tag_found(APPLET, src, alt, href);
 src[0] = NAC;
 if (alt[0] != NAC) fputs(alt, yyout);
 ECHO; POP(); }
 {TAG}param { ECHO; PUSH(INAPPLET_PARAM);
 app_param_href[0] = '\0';
 app_param_hasref = false; }
 {WS}/{TAG} { ECHO; /* Preserve layout, WS between Tags. */ }

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

 {TAG} { ECHO; PUSH(ANY_OTHER_TAG); /* No content */ }
 .|\n { if ((pc_tag_content - tag_content) < LEN)
 *pc_tag_content++ = *yytext;
 /* Don't yet ECHO */ }
}

<INAPPLET_PARAM>{
 {WS}name={OQT}url{OQT} { ECHO; app_param_hasref = true; }
 {WS}value={STR} { ECHO; strcpquote(app_param_href, yytext, LEN); }
 {WS}valuetype={OQT}ref{OQT} { ECHO; app_param_hasref = true; }
 \> { ECHO; POP();
 if (app_param_hasref) {
 strcpy(href, app_param_href);
 crawl_found(href); } }
}

<INITIAL,PURE_CHECK>{TAG}object{WS} {
 ECHO; PUSH(INOBJECT); alt[0] = NAC; src[0] = NAC;
 pc_tag_content = tag_content; *pc_tag_content = '\0';
 ++in_OBJECT; OBJECT_closed = false; }

<INOBJECT>{
 data{OWS}={STR} { ECHO; if (in_OBJECT < 2) strcpquote(src, yytext, LEN); }
 classid{OWS}={STR} { ECHO; if (in_OBJECT < 2 && src[0]==NAC)
 strcpquote(src, yytext, LEN); }
 ">" { tag_lookup(OBJECT, src, alt, href); ECHO_TITLE();
 POP(); PUSH(OBJECT_CONTENT); }
}

{TAG}i?frame{WS} { ECHO; PUSH(INFRAME); alt[0] = NAC; src[0] = NAC; }
<INFRAME>{
 src{OWS}={STR} { ECHO; strcpquote(src, yytext, LEN); crawl_found(src); }
 ">" { POP(); tag_found(FRAME, src, alt, NULL); ECHO_TITLE(); }
}

 /* ---
 * General HTML Rules and document crawling,
 * not directly related to ALT issues (except for <A>)
 */

<INITIAL,APPLET_CONTENT,OBJECT_CONTENT,PURE_CHECK>{
 {TAG}"!--" { ECHO; PUSH(COMMENT); };
}
<COMMENT>. { ECHO; };
<COMMENT>"-->" { ECHO; POP(); };

 /* ---
 * HTML crawling rules: Go/PUSH(URL) whenever a link to crawl encountered:
 see also main rule for <A ...> above.

 NOTE: This is "useless" and not needed if !defined(CRAWLED)
 In this case, crawl_found() will be empty & logfile == /dev/nul.
 Because #ifdef etc. is not allowed in LEX rules, let's just scan
 anyway, without effect.
 */

{TAG}META{NGT}HTTP-EQUIV={OQT}Refresh{OQT}{NGT}CONTENT=[^=]+= |
{TAG}"!--#include"{NGT}virtual={OQT} |
{TAG}ilayer{NGT}src={OQT} { ECHO; PUSH(URL); }

<URL>{

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

 {WS} { fprintf(logfile, logmsg[24], current_url); }
 mailto:{NQT} { ECHO; POP(); }
 [a-z]+:{NQT} { ECHO; POP(); strcpquote(href, yytext, LEN);
 /* Don't crawl external http:// (file:) but store for guess */ }
 #{NQT} { ECHO; POP(); /* ignore # local name anchors */ }
 {NQT} { ECHO; POP(); crawl_found(yytext); strcpquote(href, yytext, LEN); }
 \"|\> { ECHO; POP(); fprintf(logfile, logmsg[26], current_url); }
}

 /* External BASE, eg. <base href="http://www.vorburger.ch/"> means that we
 cannot locally crawl this page. The flag base_external is checked in
 add_url() */

{TAG}base{NGT}href={OQT}"http://" { ECHO; base_external = true; }

%%
 /* ===
 * C FUNCTIONS
 */

 /* ECHO_ALT() & ECHO_TITLE() - Usually tag_found() or at least tag_lookup()
 (if tag_found not possible) will be called before ECHO_ to allow changing
 the ALT resp. TITLE by lookup.
 */
 void ECHO_ALT() {
 if (alt[0] != NAC)
 { fputs(" alt=\"", yyout); fputs(alt, yyout); fputs("\">", yyout); }
 else
 fputs(">", yyout);
 };

 void ECHO_TITLE() {
 if (alt[0] != NAC)
 { fputs(" title=\"", yyout); fputs(alt, yyout); fputs("\">", yyout); }
 else
 fputs(">", yyout);
 };

 void object_applet_close() {
 *pc_tag_content++ = '\0';
 strcp_nows(tag_content, tag_content, LEN);
 if (tag_content[0]) strcpy(alt, tag_content);
 };

 void a_content_close() {
 *pc_tag_content++ = '\0';
 strcp_nows(tag_content, tag_content, LEN);
 if (tag_content[0]) pure_A = false; else pure_A = true;
 };

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

8.2 ALT_GUESS.CPP

/* FILE: alt_guess.cpp - The ALT "guess & heuristics engine"
 PROJECT: ALTifier, see http://www.vorburger.ch/projects/alt
 AUTHOR: Michael Vorburger [mike@vorburger.ch]

 LAST MODIFIED: February, 1999
 CREATED: January, 1999

 Code and rationals used herein are partly based on
 html_textonly.cpp, a module from a previous project
 named TextOnly, see http://www.vorburger.ch/projects/textonly
*/

#include "alt.h"
#include "../../../shared-src/pathfoos.h"

const int ALT_LEN = 256;

// FORWARD DECLARATIONS
//
bool isNULL(char* alt, ALT_TYPE type);
static void URL_to_ALT(cchar* url, char* ALT, int max = ALT_LEN);
static bool add_Suggestion(char* alt, char* Suggestions[],

 int found_Suggestions);
static int from_fixString(char* fixALT, char* alt_Suggestions[],

int found_Suggestions);
static int from_scan_Tags(ALT_Tag* guessTag, ALT_Tag* t, bool needs_equal_link,
 char* alt_Suggestions[], int found_Suggestions,

int max_Suggestions);

// --
// alt_guess(ALT_Tag* tag, char* alt_Suggestions[], int max_Suggestions)
//
// We gradually fill the alt_Suggestions array using from_* in order of
// priority, until we have max_Suggestions, or cannot guess any further ideas
// for this tag.
//
// NOTE: PLEASE DON'T CHANGE THE ORDER OF THE IF()S UNLESS YOU KNOW EXACTLY WHY.
//
int alt_guess(ALT_Tag* tag, char* alt_Suggestions[], int max_Suggestions = 1)
{
 int found_Suggestions = 0;

 // ––––––––-
 // LOOP(...) do-while – Not yet implemented, but needed for GUI Suggestion

 // If this is a *LINK* tag, find ALT text of ANY tag that references
 // the page with same LINK. This has higher priority than the following
 // because eg. a "Next" button IMG could show the target and not the
 // same ALT as the next.gif had on the previous page.
 //
 if (tag->link && (tag->type != IMG_LINK_NONPURE || found_Suggestions>0

))
 found_Suggestions = from_scan_Tags(tag, theDB.Lookup(tag->link->url)

->firstTag, false, alt_Suggestions, found_Suggestions, max_Suggestions);
 if (found_Suggestions >= max_Suggestions)
 return found_Suggestions;

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

 // Find ALT text of same tag, as used on other pages (or later on this page)
 // with same LINK, that is href attribute etc is considered as well.
 //
 found_Suggestions = from_scan_Tags(tag, tag->element->firstTag, true,

 alt_Suggestions, found_Suggestions, max_Suggestions);
 if (found_Suggestions >= max_Suggestions)
 return found_Suggestions;

 // Find ALT text of same tag, as used on other pages (or later on this page)
 // and don't care about LINK.
 //
 found_Suggestions = from_scan_Tags(tag, tag->element->firstTag, false,
 alt_Suggestions, found_Suggestions, max_Suggestions);
 if (found_Suggestions >= max_Suggestions)
 return found_Suggestions;

 // For *NONPURE* IMG LINK suggest an empty ALT="" because there is explaining
 // text in the link and the image is likely to be a (small) inline decoration
 // which, if it disappears in text-only browsing, is no loss of real
 // information.
 //
 if (tag->type == IMG_LINK_NONPURE) {
 found_Suggestions = from_fixString("", alt_Suggestions,
 found_Suggestions);
 if (found_Suggestions >= max_Suggestions)
 return found_Suggestions;
 };

 // If this is a *LINK* tag, find ALT text by using the URL of the linked page
 //
 if (tag->link) {
 char ALT[ALT_LEN];
 URL_to_ALT(tag->link->url, ALT);
 found_Suggestions = from_fixString(ALT, alt_Suggestions,

found_Suggestions);
 if (found_Suggestions >= max_Suggestions)
 return found_Suggestions;
 }

 // Horizontal ruler heuristics (IMG for HR)
 // NOTE: width/height == -1 means NOT present/read/set
 //
 if (tag->type == IMG && tag->img_width > 100 && tag->img_height > 1
 && tag->img_height < 50 && (tag->img_width / tag->img_height >= 10))
 {
 static char* ALT_HR =

"__";
 int ALT_HR_len = MIN(tag->img_width / 10, 65);
 ALT_HR[ALT_HR_len] = '\0';

 found_Suggestions = from_fixString(ALT_HR, alt_Suggestions,
found_Suggestions);

 ALT_HR[ALT_HR_len] = '_'; // ALT_HR has been copied, so restore.
 if (found_Suggestions >= max_Suggestions)
 return found_Suggestions;
 }

 // Bullet heuristics (IMG for UL/LI)
 //
 if (tag->type == IMG && tag->img_width > 5 && tag->img_height > 5
 && tag->img_height < 30 && tag->img_width < 30
 && (tag->img_width / tag->img_height <= 4))
 {

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

 found_Suggestions = from_fixString("* ", alt_Suggestions,
found_Suggestions);

 if (found_Suggestions >= max_Suggestions)
 return found_Suggestions;
 }

 // Decorative Spacer & invisible zero IMG
 //
 if (tag->type == IMG &&
 (tag->img_width == 0 || tag->img_height == 0
 || tag->img_width == 1 || tag->img_height == 1))
 {
 found_Suggestions = from_fixString("", alt_Suggestions,

found_Suggestions);
 if (found_Suggestions >= max_Suggestions)
 return found_Suggestions;
 }

 // A server-side gets a fixed string
 // (if no other was found so far or more are requested)
 //
 if (tag->type == IMG_ISMAP) {
 found_Suggestions = from_fixString("[SERVER-SIDE IMAGE MAP]",

alt_Suggestions, found_Suggestions);
 if (found_Suggestions >= max_Suggestions)
 return found_Suggestions;
 };

 // APPLET
 //
 if (tag->type == APPLET) {
 char ALT[ALT_LEN];
 strcpy(ALT, "JAVA APPLET: ");
 char APPLET_src[ALT_LEN];
 URL_to_ALT(tag->element->url, APPLET_src);
 strncat(ALT, APPLET_src, ALT_LEN);
 found_Suggestions = from_fixString(ALT, alt_Suggestions,

found_Suggestions);
 if (found_Suggestions >= max_Suggestions)
 return found_Suggestions;
 };

 // OBJECT
 //
 if (tag->type == OBJECT) {
 char ALT[ALT_LEN];
 strcpy(ALT, "OBJECT: ");
 char OBJET_classid[ALT_LEN];
 URL_to_ALT(tag->element->url, OBJET_classid);
 strncat(ALT, OBJET_classid, ALT_LEN);
 found_Suggestions = from_fixString(ALT, alt_Suggestions,

found_Suggestions);
 if (found_Suggestions >= max_Suggestions)
 return found_Suggestions;
 }

 // If still more ALT wanted, use the tag's own URL (that is eg. IMG src=)
 //
 char ALT[ALT_LEN];
 URL_to_ALT(tag->element->url, ALT);
 found_Suggestions = from_fixString(ALT, alt_Suggestions, found_Suggestions

);

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

 return found_Suggestions;
};

// --
// add_Suggestion() - Helper function called from alt_guess. NOT exported!
// Adds new suggestion but first checks if new alt is already in
// Suggestions list. If not, inserts it and returns true, else false.
//
static bool add_Suggestion(char* alt, char* Suggestions[], int found_Suggestions)
{
 if (isNULL(alt, IMG)) // "IMG" here means we don't care, just a check!
 return false;

 for (int i=0; i<found_Suggestions; i++)
 if (strcmp(Suggestions[i], alt) == 0)
 return false;

 Suggestions[found_Suggestions] = alt;
 return true; // alt_guess() will increment it's found_Suggestions counter.
}

// --
// alt_guess_theDB() altifies the entire local Registery,
// using the above function.
//
// One first has to crawl a site, using theDB.Crawl("index.html")
// or read analyze at least one page, using theDB.AnalyzeDoc()
//
void ALT_DB::Guess()
{
 ALT_Element* e = theDB.Elements.list_head;
 while (e) {

 ALT_Tag* t = e->firstTag;
 while (t) {

 if (isNULL(t->alt, t->type))
 {
 char* alt = new char[ALT_LEN];
 if (alt_guess(t, &alt) == 1)
 {
 if (t->alt != NULL)
 delete[] t->alt;
 t->alt = alt;
 t->guessed = true;
 }
 else
 delete[] alt;
 }

 t = t->next;
 };

 e = (ALT_Element*)e->next;
 };
}

// --
// bool isNULL(char* alt, ALT_TYPE type)
// Is ALT of type an "empty" ALT? Various reasons; eg. IMG/ALT="... byte"
// is completely useless and stupid and reported as being empty/null.
//
bool isNULL(char* alt, ALT_TYPE type) {
 if ((alt == NULL) || (*alt == NAC))
 return true;

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

 if (type == IMG_LINK) { // inside a PURE IMG_LINK,
 char emptyALT[ALT_LEN]; // ALT=" " counts as NULL as well
 strcp_nows(emptyALT, alt, ALT_LEN); // and is forbidden / replaced with
 if (strlen(emptyALT) == 0) { // a guess.
 // LOG
 return true;
 }
 };

 if (strstr(alt, "byte") // These presumably automatically
 || strstr(alt, "gif") // generated ALT (eg. by MS FrontPage)
 || strstr(alt, "jpg") // is nonsense and equals alt == NULL.
 || strstr(alt, "png")
 || strstr(alt, "KB"))
 return true;

 return false;
};

// --
// void URL_to_ALT(cchar* url, char* ALT, int max = ALT_LEN) converts
// an URL to ALT text, using either the entire URL (simple copy)
// or just it's filename without extension or just the last directory.
//
static void URL_to_ALT(cchar* url, char* ALT, int max)
{
 // External links of type http:// (or ftp:// or anything else)
 // are returned as-is for ALT.
 //
 if (strchr(url, ':')) {
 strncpy(ALT, url, max);
 return;
 }

 // Otherwise (local files) use the filename without extension as ALT
 //
 strncpy(ALT, extract_FileName(url), max);
 remove_extension(ALT);

 // "index.html" and "default.asp" etc. are not very usefull ALTs
 // so we provide the folder name before it
 //
 if (stricmp(ALT, "index") == 0 || stricmp(ALT, "default") == 0)
 { char* directory_ALT = strcpy_new(url);
 if (directory_ALT) {
 remove_folder(directory_ALT);
 if (directory_ALT[0])
 strcpy(ALT, extract_FileName(directory_ALT));
 delete[] directory_ALT;
 }
 }

 str_replace_char(ALT, '_', ' ');
 str_replace_char(ALT, '-', ' ');

 // Capitalize first letter of every word... just to look nice.
}

// --
// int from_scan_Tags(...) scans the ALT Registry starting with Tag t for
// other occurences of this tag. If needs_equal_link then only tags
// embedded in the same link are considered. When found,
// it add_Suggestion()s and in the end returns the number
// of suggestions added.
//

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

static int from_scan_Tags(ALT_Tag* guessTag, ALT_Tag* t, bool needs_equal_link,
 char* alt_Suggestions[], int found_Suggestions,
 int max_Suggestions)
{
 while (t)
 {
 if (!isNULL(t->alt, t->type)
 && (!needs_equal_link || t->link == guessTag->link)
 && add_Suggestion(t->alt, alt_Suggestions, found_Suggestions))
 if (++found_Suggestions >= max_Suggestions)
 return found_Suggestions;

 t = t->next;
 };

 return found_Suggestions;
}

// --
// from_fixString(char* fixALT, char* alt_Suggestions[], int found_Suggestions)
// adds the constant fixed string fixALT to the list of suggestions.
//
//
static int from_fixString(char* fixALT, char* alt_Suggestions[], int

found_Suggestions)
{ char* tmp_fixALT = strcpy_new(fixALT);

 if (add_Suggestion(tmp_fixALT, alt_Suggestions, found_Suggestions))
 return ++found_Suggestions;
 else {
 if (tmp_fixALT) delete[] tmp_fixALT;
 return found_Suggestions;
 }
}

8.3 ALT_REGISTRY.H

/* --
 FILE: alt_registry.h - The ALT "database" (in-memory)
 PROJECT: ALTifier, see http://www.vorburger.ch/projects/alt
 AUTHOR: Michael Vorburger [mike@vorburger.ch]

 LAST MODIFIED: January, 1999
 CREATED: January, 1999
*/

// --
// THIS IS INCLUDED ONLY BY ALT.H
// FUNCTIONS IN ALT_REGISTRY.CPP DECLARED THERE.
// --

#ifndef ALT_REGISTRY_H
#define ALT_REGISTRY_H 1

#include "../../../shared-src/microsoft_borland.h"
#include "../../../shared-src/pathfoos.h"

struct ALT_Doc;
struct ALT_Element;

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

// --
// A general base class for simple linked lists.
//
struct List_Element
{
 List_Element* next;
 char* url; // url, used as a "key" for sorting and look-up

 List_Element(cchar* u, List_Element* n)
 : next(n) { url = new_strcpy(u); };

 virtual ~List_Element()
 { if (url) delete[] url; };

private:
 List_Element(void);
};

template<class Element> struct List
{
 Element* list_head;
 Element* Lookup(cchar* url);
 Element* Lookup(cchar* url, bool& isNew);
 Element* getNext(Element* e) { return (Element*)(e->next); };

 void Reset();
 List() : list_head(NULL) { };
 virtual ~List() { Reset(); };
};

// --
// One specific occurence of an ALTifiable HTML TAG
//
struct ALT_Tag
{
 ALT_Element* element; // ptr to it's "key" URL etc.
 ALT_Doc* onPage; // what HTML doc does this specific tag appear in?

 ALT_TYPE type; // as which type is the element used in this tag?
 char* alt; // what's the ALT in this tag?
 bool guessed; // was the alt text just guessed?
 ALT_Doc* link; // does this tag link do a doc? (Used in Guessing)

 int img_width; // IMG's width= & height= attributes, undefined= -1
 int img_height; // YES, not "nice" and subclassing would be better.
 // because -1 means NOT present/read/set

 ALT_Tag* next; // next occurence of this element, same or other doc

 ALT_Tag(ALT_Element* e, ALT_Doc* p, ALT_TYPE t, const char* a, ALT_Doc* l)
 : element(e), onPage(p), type(t), link(l), guessed(false)
 { alt = new_strcpy(a); next = NULL; img_width = img_height = -1; };

 ~ALT_Tag() { if (alt) delete[] alt; }

private:
 ALT_Tag();
};

$/7,),(5 � :(% $&&(66,%,/,7< (1+$1&(0(17 722/ 0LFKDHO 9RUEXUJHU

��

// --
// One ALTifiable "element" such as a GIF or referenced page, which is used
// in the corresponding ALT_Tags.
//
struct ALT_Element : List_Element
{
 ALT_Tag* firstTag; // first specific Tag which uses this element
 ALT_Tag* lastTag; // last Tag which uses this element (speed-up ins)

 ALT_Element(cchar* url, List_Element* n)
 : List_Element(url, n) { firstTag = lastTag = NULL; };

private:
 ALT_Element();
};

// --
// One specific HTML document
//
struct ALT_Doc : List_Element
{
 ALT_Doc(cchar* url, List_Element* n, cchar* ref)
 : List_Element(url, n) { crawled = false; refby=new_strcpy(ref); };
 ALT_Doc(cchar* url, List_Element* n)
 : List_Element(url, n) { crawled = false; refby=NULL; };

 bool crawled; // has this doc already been crawled?
 char* refby; // who (first) referenced this doc? (when crawling)

 virtual ~ALT_Doc()
 { if (refby) delete[] refby; };

private:
 ALT_Doc();
};

// --
// ALT_DB - The whole story together...
//
struct ALT_DB
{
 List<ALT_Element> Elements;
 List<ALT_Doc> Docs;

 ALT_Tag* Store(cchar* docurl, ALT_TYPE type,
 cchar* url, cchar* alt, cchar* link);

 ALT_Element* Lookup(cchar* element_url);

 int Crawl(cchar* local_homepage);
 int ProcessDoc(FILE* in, FILE* out);

 void Guess();
};

#endif /* ALT_REGISTRY_H */

