Abstract



As I started programming a tiny library with classes for symbolic maths, I realized that C++ lacks support for easy handling of polymorphic class hierarchies. Due to the unique ability of using statically alloctated objects in C++, one immediately has to deal with pointers and dynamic memory allocation when using polymorphic objects (static objects fail when polymorphism and abstract base classes are used). In most other OOP languages, an „object“ is internally a „pointer to an object“. This is different in C++.

From a design point of view, many of these cases have nothing to do with either pointers, or with dynamic memory allocation. Therefore a pattern was created that supports dealing with polymorphic objects as if they were static. The user of such an object need not take care of memory allocation and deallocation, dereferencing or the distinction between shallow and deep copy. The extra level of indirection also provides some additional advantages such as separation of class hierarchy and interface class, possibility of assignment to oneself with type-change and possibility of separate compilation.

My approach works with reference counting and is strongly connected to C++ ability of automatic constructors/destructors invocation. It is an alternative to garbage collection.



This report also contains a chapter about the math project itself and a chapter about a general library. Furthermore, it includes a chapter about error-safer programming.





keywords: pattern: handle, letter/envelope, composite; garbage collection; C++; symbolic math library



�


Projektbericht Schweizer Jugend forscht		Michael Vorburger, St.Gallen



		Seite � SEITE �1�



Projektbericht Schweizer Jugend forscht: Objektorientiertes Programmieren in C++	Michael Vorburger, St.Gallen



		� SEITE �2�/� =� ANZSEITEN �2�-1 �1�







