
[image: image2.png]

Tesina per il corso

Ingegneria di Software

Politecnico di Torino

HTTP Proxy Server
A Client/Server Example

Version 1.0

Prof. Bruno
Assi. M. Torchiano

Politecnico di Torino
Michael Vorburger (ERASMUS, EPFL/Switzerland)
e-mail: mike@vorburger.ch – http://www.vorburger.ch

September / October / November 1998

Abstract

The goal of this project («HTTP Proxy Server») was to implement a simple, easy to understand and flexible HTTP proxy server. The main purpose of the proxy server is to be used as an HTML filter. The filtering tools can be "plugged-in" very easily, without modification of the proxy source code. Apart from filtering, the proxy server also caches documents on disk for faster access.

Part of the specification was the request to retain simple statistics about documents. These information is stored on disk as well and accessible from the proxy server by a client through a Web interface.

keywords: Simple HTTP Proxy Server, wcol, HTML Filter, Web, HTTP, HTML, C

Contents

41
Specification and Requirements

1.1
How Does a Proxy Server Work?
4
1.2
Not "Reinventing the Wheel" (Web Research & WCol)
4
1.3
Platform & Environment
5
2
User Manual
6
2.1
Running the Proxy Server
6
2.2
Set up the client (Web Browser)
6
2.3
Set up Filtering
6
3
Discussion
8
3.1
Structure Of WCOL
8
3.2
Fixing WCOL-A
8
3.3
Downsizing WCOL-A
9
3.4
Extending WCOL (Show Statistics)
9
3.5
Strange Bug (Open Issue)
9
1
Specification and Requirements

1.1 How Does a Proxy Server Work?

A proxy server is a special kind of HTTP Web server. A "normal" HTTP server replies to GET with the documents it has stored locally, and ignores the machine name part of the URL. The following example illustrates this:

mike@alinux:/ > telnet localhost 80

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

GET http://www.yahoo.com/index.html
If a "normal" HTTP server such as Apache is running on localhost on port 80, this GET request will send the local index.html page, not the one from the www.yahoo.com machine. After all, why should it?

Now imagine a proxy server: It also listens at a given port, e.g. 8080 or 8100, and is queried by some client like Netscape if configured appropriately. If the end user types http://www.yahoo.com/index.html into the URL box, the client issues a GET request to the Proxy server.

Opposed to a web server like Apache, a Proxy server as implemented in this project now actually does 'forward' the request to the www.yahoo.com machine! Usually, some post-processing like local caching or HTML manipulation is done as well before passing the received page through to the client.

1.2 Not "Reinventing the Wheel" (Web Research & WCol)

It was tried not to "reinvent the wheel" for the implementation, and some research on the Web has been done to find existing proxy servers in source form that could be used as a basis for this project. The search yielded several results: GNU wwwoffle, wcol WWW Collector, Squid & Harvest.

Most of the sources found were "professional" solutions, in the case of Squid for example consisting of more than 41'000 lines of code, or wwwoffle with 20'000 lines. Much of that code has nothing to do with actual proxy functionality, and was of little interest.

A posting in a newsgroup pointed the author of these lines to wcol-A, an old source from 1994 with only 3800 lines. This code was studied in depth and formed the bases for this project. As described later on, a major error had to be fixed due the age of the A-version. Extensions as required by the project specification to query some statistics have been implemented as well.

Only after the project almost completed, a recent update of wcol and it's homepage
 was discovered. Wcol's author (Kenichi Chinen <k-chinen@is.aist-nara.ac.jp>) did in fact continue updating the program.

The latest version
 at the time of writing, wcol-E from July 1998, has additional support for ICP (Internet Cache Protocol), does "threading by asyncronus connection" to prevent "file descriptors from run over", and "pre-fork -- reduce number of fork()" as well as "file descriptor passing -- no file descriptor starvation" & "garbage collection -- delete unused or old resources" and support for the FTP protocol. Some "Catalyst mode (a.k.a. Cuckoo)" is implemented as well.

The source code of wcol considerably grew as a result of these and other extensions, wcol-E consisting of 32'000 (!) lines compared to just 3800 in wcol-A. To ease understanding, it was decided to keep the old A-version as a basis for this project's proxy server.

1.3 Platform & Environment

[image: image1.wmf]The project was developed under UNIX (LINUX) using the gcc compiler, as this system was available and the author had usage experience. The UNIX environment with it's various tools also proofed to be very useful for testing purposes. For example, the text-only browser LYNX was used to easily debug a problem related to the HTTP/MIME Header:

mike@alinux:/home/mike > lynx -mime_header http://localhost/

2 User Manual

2.1 Running the Proxy Server

To install the proxy server, simply type make in the unpacked source's directory, and launch it by typing wcol. The proxy server is now per default listening on port 8100. Set up the Web client to access it as described in the next chapter.

The following options are available, -t (trace) being of special interest to understand the proxy server:

mike@alinux:/home/mike/Proxy/wcol/src > wcol -?

alpha Proxy, based on wcol (WWW Collector)

ORIGINAL ver 0.02, Dec 1994 by k-chinen@is.aist-nara.ac.jp

UPDATED & EXTENDED Nov 1998 by mike@vorburger.ch

Usage: wcol [option]

Option: -h , -? Help

 -v version

 -a file accetable table file

 -c file convert table file

 -k seconds keep time

 -t & -V trace (Verbose)

 -p no port number

 -d dir pool directory

 -l file logfile

example: wcol -p 8100 -d /tmp/www-pool -l /tmp/wcol.log

2.2 Set up the client (Web Browser)

To use the proxy server, please set up your client with the corresponding options. For Netscape 4.x, this is in Edit/Preferences/Advanced/Proxies. For Lynx and other UNIX based HTTP clients, use:

http_proxy=http://localhost:8100/

export http_proxy

lynx ...

2.3 Set up Filtering

The file wcol-conv.cfg allows to configure the HTML filtering. An HTML filtering tool can receive the name of the cached HTML input file as argument, and has to output the result to stdout.

This is sample wcol-conv.cfg which "filters" all HTML with a UNIX cat -n command, and outputs it as text/plain instead text/html MIME type. When a client uses this proxy setting, all HTML files will be displayed in HTML source form, with line numbers added.

Convertor Table Sample

#

Format:

input-type input-ext ouput-type program-and-arguments

@i

input-filename

@o

output-filename

"text/html"
""

"text/plain" "cat -n @i"

""

".html"

"text/plain" "cat -n @i"
3 Discussion

3.1 Structure Of WCOL

Here is an overview of WCOL's general structure: Function main() in main.c does command line processing and some initializations, and calls mainloop() [main.c]. For each accept'ed socket connection, a new instance of reception() [main.c] is then forked.

Reception() calls Get() in get.c which does some simple locking and invokes HTTP_Get() in http.c. It is this function (HTTP_Get) which actually fetches a page, and stores it in the spooling directory (default: /tmp/www-pool/) in three versions, eg. index.html and index.html,head and index.html,info.

Back in Reception(), the function Send() in send.c is called if Get() completed successfully. Send() checks if a filter (hook) is defined. If yes, an HTTP header is sent using Send_Head() followed by the pre-processed page. If not, Send_Body_Direct() directly sends the cached head file using Send_Head_Direct() and the cached body file using a simple loop.

Please note that the cached file on disk is always the original as sent by the Web server. The filtering takes only place at the moment of sending. This also means, it has to take place at every send again. A future improved version could get/fetch a document, filter it, and store/cache the result. This would need some changes in the fundamental architecture of WCOL, but is certainly possible.

3.2 Fixing WCOL-A

WCOL dates from 1994 and the author of this paper discovered a major bug which was then fixed: Because WCOL only knows about HTTP/1.0, the modern HTTP/1.1 is not recognized and treated as HTTP/0! For this reason, the splitting into HTTP (not HTML) head and body did originally not work as intended anymore.

This could be fixed in HTTP_Get() in http.c by strncmp'ing against "HTTP/1." instead "HTTP/1.0 " and hence changing the third length parameter from 9 to 7. (In the Generate_Info() function, a pure optical change from "1.0" to "1.x" was made as well.) Identically in send.c, three strncmp(opt,"HTTP/1.0", 8) had to by replaced by strncmp(opt,"HTTP/1.",7).

Another issue was a wrong Content-Type line written by Send_Head() in send.c, which made it impossible to use text/plain instead text/html, as needed for the example in wcol-conv.cfg. This could be fixed as well, and was due to an illegal sprintf (stdio) usage in the original code:

sprintf(buf, "X-%s", buf);

/* buf-buf overwrites!!! */

A few more minor fixes, such as fixing confused close() and fclose() or port 8100 instead 80 per default, have been implemented as well.

3.3 Downsizing WCOL-A

Even though WCOL already is a very simple server application, it was further simplified in the interest of easy understanding. The following modules were moved to ./Arc:

The "prefetch" feature (prefetch.c) as the this is a waste of bandwidth in the author's opinion, the HTML parser needed for prefetching, but nowhere else (pa.[ch]) and the built-in special Japanese HTML filtering (jfilter.c) functions. The filter (hook) functionality was simplified, providing only external filters and no built-in functions.

3.4 Extending WCOL (Show Statistics)

According to this project's specification, WCOL was extended to support returning some kind of status information through the HTTP/HTML interface. It is now possible to query the proxy server itself, by simply typing http://host:8100/ into a browser's URL box if the proxy server listens on port 8100.

This feature works independent of the fact that the browser is configured to actually use this proxy server, or not. The proxy server recognizes if it is accessed as Proxy, or as "simple" web server for status information. This can be achieved by checking if GET specifies a machine name (proxy mode), or just a path (web server mode).

The relevant changes and extensions of the source code can be found in send.c in the if (info‑>attr.count == -7) check of Send() and the new functions Send_Stats(), Send_Homepage() and Send_Info().

3.5 Strange Bug (Open Issue)

Given a machine named alinux, which as always is also localhost. A strange bug was discovered that is beyond the author's understanding of HTTP and proxy issues: Any local connection, for example from this proxy, using the name alinux instead localhost to an HTTP server on a port other than 80 is reject or times out!

For example, accessing an URL like http://localhost:8080, where 8080 is the port of another proxy server's configuration page, from a client through this Proxy is not possible. Note the following points:

1. The problem is specific to "non-std" HTTP ports. On port 80, an HTTP server replies as expected to a connection on localhost and alinux, while on another port it does not, as described.

2. The problem is limited to a connection from within the same machine. An HTTP connection from another machine to the respective port works as expected. This is the reason is does usually not appear without proxy server.

3. The machine's name (alinux) is defined in /etc/hosts, no DNS server is running.

4. The problem appears with at least two different HTTP Web servers, namely Apache and the small web server built into wwwoffle.

One idea about how to tackle this problem was to "somehow" identify that alinux is in fact localhost, and overwrite the hostname in this case. How can one find out that two DNS names point to the identical machine? IP number comparison is not possible, because localhost is 127.0.0.1 and alinux is 192.168.0.1. One machine can very well have different interfaces, anyway.

Any help, further ideas, suggestions and insights relating to this problem is most welcome. I remain interested in solving this issue. Please e-mail to mike@vorburger.ch.
� � HYPERLINK http://shika.aist-nara.ac.jp/products/wcol/wcol.html ��http://shika.aist-nara.ac.jp/products/wcol/wcol.html�

� � HYPERLINK http://shika.aist-nara.ac.jp/cgi-bin/archive?Wcol ��http://shika.aist-nara.ac.jp/cgi-bin/archive?Wcol�

