�
�

Project Report

European Union Contest

for Young Scientists

A “Fruity” Approach to�Memory Management in C++

A Pattern for Object Encapsulation

 �Translated Short Version of Original German Report�without Additional Chapters and Source Code

sjf-Expert: Prof. J. Gutknecht,

ETHZ/Swiss Federal institute of Technology

EU-Jury: 10 International Experts, among them:�Prof. D. Olesen, Danish Super Computing Center,�Dr. E. Meieran, Intel Corp.�

Michael Vorburger, St.Gallen-Switzerland

October 1994 – March 1995, May 1995

�
Abstract

As I started programming a tiny library with classes for symbolic mathematics, I realized that C++ lacks support for easy handling of polymorphic class hierarchies. When using polymorphic class hierarchies, one immediately has to deal with pointers and dynamic memory allocation. Static objects cannot be used with polymorphism and abstract base classes. In most other OOP languages, an “object” is internally a “pointer to an object”. This is different in C++, where statically allocated objects are possible.

From a design point of view, many of these cases have nothing to do with either pointers, or with dynamic memory allocation. Therefore a pattern was created that supports dealing with polymorphic objects as if they were static. The user of such an object needs not take care of memory allocation and deallocation, dereferencing or the distinction between shallow and deep copy. This done by introducing a class SmartPointer, that supports memory management with reference counting. Another pair of classes, a Shell and a Fruit, and some macros, support a so-called copy-on-write strategy, automatic construction and protection against use of uninitalized variables. The SmartPointer class is reused in the Shell class.

The extra level of indirection also provides some additional advantages such as separation of class hierarchy and interface class, possibility of assignment to oneself with type-change, and possibility of separate compilation. My approach is strongly connected to C++ ability of automatic constructor's/destructor's invocation. It is an alternative to operating-system based garbage collection.

The report shows in detail, why this technique is needed, what advantages it provides and how the pattern is used. It also contains a chapter about garbage collection in general, and some annotations to C++.

keywords: pattern: handle, letter/envelope, composite; garbage collection; C++; symbolic math library

Contents

� VERZEICHNIS \o "1-3" �1 Introduction	� GEHEZU _Toc325988618 � SEITENREF _Toc325988618 �4��

1.1 Motivation	� GEHEZU _Toc325988619 � SEITENREF _Toc325988619 �4��

1.2 Original German Report	� GEHEZU _Toc325988620 � SEITENREF _Toc325988620 �4��

2 “Shells and Fruits”	� GEHEZU _Toc325988621 � SEITENREF _Toc325988621 �5��

2.1 Introduction	� GEHEZU _Toc325988622 � SEITENREF _Toc325988622 �5��

2.2 Pointers, References – What is Next?	� GEHEZU _Toc325988623 � SEITENREF _Toc325988623 �5��

2.2.1 Looking back	� GEHEZU _Toc325988624 � SEITENREF _Toc325988624 �5��

2.2.2 Necessity of a New Type	� GEHEZU _Toc325988625 � SEITENREF _Toc325988625 �6��

2.3 Method	� GEHEZU _Toc325988626 � SEITENREF _Toc325988626 �7��

2.3.1 An Example in the “Old” Way	� GEHEZU _Toc325988627 � SEITENREF _Toc325988627 �7��

2.3.2 Extension 1: Memory Management with SmartPointers	� GEHEZU _Toc325988628 � SEITENREF _Toc325988628 �9��

2.3.3 Extension 2: Encapsulation with Shells (Handles)	� GEHEZU _Toc325988629 � SEITENREF _Toc325988629 �11��

3 Results	� GEHEZU _Toc325988630 � SEITENREF _Toc325988630 �14��

3.1 Garbage Collection	� GEHEZU _Toc325988631 � SEITENREF _Toc325988631 �14��

3.1.1 Introduction	� GEHEZU _Toc325988632 � SEITENREF _Toc325988632 �14��

3.1.2 Mark-Scan	� GEHEZU _Toc325988633 � SEITENREF _Toc325988633 �14��

3.1.3 Circular Structures	� GEHEZU _Toc325988634 � SEITENREF _Toc325988634 �14��

3.2 A Better Way to Return Objects from Functions	� GEHEZU _Toc325988635 � SEITENREF _Toc325988635 �15��

3.3 Comparison with Coplien	� GEHEZU _Toc325988636 � SEITENREF _Toc325988636 �15��

3.4 C++	� GEHEZU _Toc325988637 � SEITENREF _Toc325988637 �16��

3.4.1 Critics	� GEHEZU _Toc325988638 � SEITENREF _Toc325988638 �16��

3.4.2 Advantages	� GEHEZU _Toc325988639 � SEITENREF _Toc325988639 �16��

4 Summary	� GEHEZU _Toc325988640 � SEITENREF _Toc325988640 �17��

5 References	� GEHEZU _Toc325988641 � SEITENREF _Toc325988641 �18��

��
Introduction

Motivation

In December 1993, I started programming a tiny library for symbolic mathematics. I wanted to set up a C++ interface that was as simple as possible to use:

{

	Term a=2;

	Term b=3.2;

	Term x="x";

	Term r;				// result

	r=(x^4)*a;	

	cout << r;			// Output: 2*(x^4)

	cout << (r^a);	// Output: 4*(x^8)

};

As I soon realized, Term would probably be a base class of a class hierarchy. After some time, I found that Term should be an interface-class that handles construction of objects and memory management. Because this issue became more interesting, I went on programming a general Shell/Fruit pattern.

The math project was not finished, but much effort was put in a good, reliable and easy to use Shell/Fruit pattern.

Original German Report

This report is a short version of an eighty pages German report, I wrote for “Schweizer Jugend forscht”. The German report also contains a chapter about the math project itself and a chapter about a general library with container classes and a string class (“fruity” strings). Furthermore, it includes an easy to understand introduction to object orientation and a chapter about error-safer programming.

The source code which is also included in the German report is available as a separate appendix to this English translation.

“Shells and Fruits”

Introduction

C offers the classical pointer-type for management of dynamic objects on the heap [e.g. int*]. As I will show in the next chapters, this type has some disadvantages. C++ therefore introduced an additional type called reference [e.g. int&].

This chapter shows, how and why a third item called handle was added to the series of pointers and references. It discusses the advantages and usage of this type. Additionally, the classical garbage collection and the reference counting method are compared.

If some of the ideas presented here seem well-known to you, please keep in mind that they were developed completely by my own. Books like [Coplien] (where a similar technique is presented) were only consulted after completion of this project. (When an expert gave me the tip of having a look at that book.)

Pointers, References – What is Next?

Looking back

Long before object oriented programming started to spread, programmers knew the type pointer. It was mainly used when a data structure was dynamic, that means when the size of the variable was unknown at compile-time. Prominent examples are trees or similar (often recursive) structures.

In C, pointers were often also used for other things: A well-known example is a function parameter that is passed as pointer because the passed variable has to be changed in the function (or even for mere efficiency). This use has nothing to do with the original intention of dynamic memory management. That’s why PASCAL introduced the VAR keyword: With VAR, arguments can be changed within a function but the user does not have to care about addresses and dereferencing. In C, that could not be avoided: (Please note that this is an example. This trivial case would in reality better be solved with a real function instead a procedure.)

void foo(int arg, �int* varg)

{

	(*varg)=arg+1; /* derefernce!	*/

};

foo(5,&i);	 /* address of i */�
 PROCEDURE foo(arg:Integer; �VAR varg:Integer);

 BEGIN

	 varg:=arg+1;� END;

 foo(5,i);		{ NOT foo(5,@i) }�
�

Stroustrup recognized this “problem” and introduced references when he defined C++. A Reference is “... an alternative name for an object” [Stroustrup; §2.3.10; 1993]. References have to be bound to an object as soon as they are defined. Therefore, there are no uninitialized references. It is not possible to let a reference “point” to another object any later because all operations on references are forwarded to the object itself and do not affect the reference itself. The above example can be written in C++ as follows:

void foo(int arg, int& varg)

{

	varg=arg+1;

};

foo(5,i);

�
�
References have other advantages as well, e.g. the possibility of defining functions that can be used both as lvalue as well as as rvalue. [Stroustrup; p.61; 1993]

Necessity of a New Type

When classes were introduced with C++, the above problem of using pointers for things they were not designed for, showed up again: As soon as polymorphic class hierarchies are used, one has to deal with pointers to the base class. The use of abstract base classes is another must for pointers.

This use of pointers is another case where the language forces the programmer to use pointers even though from a design point of view, it is not logical: From the design point of view, this case has nothing to do with dynamic memory allocation. Of course, in a implementation point of view, it has. But these things should be separated. (In PASCAL for example, a VAR parameter has nothing to with pointers as well from the design point of view, though in a implementation view, it is of course also passed as address.)

Here is what I expect from the new type handle:

Table � SEQ Table * ARABISCH �1�: Expected properties from new type handle

External behavior like static objects (design)�
Internally a pointer (implementation)�
�
1. Automatic memory management �
(Automatic allocation of objects�(Autom. deallocation (reference counting)�
�
2. Assignment to other objects (almost) as efficient as pointer assignment�
(Copy-on-write strategy: Autom. choose between shallow-copy and deep-copy�
�
3. Uninitialized objects are possible ((References), but they have access-protection ((Pointer)�
(Runtime error on use�
�
4. Initialization with different types�
(Depending on the constructor arg,�different inside objects are created�
�

Method

The necessity for this new type will be shown in this chapter by developing a tiny example. First in the traditional way with Pointers. Second, for the memory management purposes, the same example is then done with the use of so-called SmartPointers. Third, the same example is developed with the Shell/Fruit model.

An Example in the “Old” Way

Table � SEQ Table * ARABISCH �2�: A new type with the following properties (example)

can be initialized with both int and char�
�
has a method Print() to show the number or character�
�
has a method Incr() to increment numbers and characters (in different ways)�
�

Of course, we will use a simple class hierarchy for this problem: We need an abstract base class (VarF) with the interface and two derived classes (IntF and CharF) with the implementations:

class VarF : public Fruit

{ public:

 virtual void Print() const = 0; // const

 virtual void Incr() = 0; // non-const

 friend MyVar;

};

class IntF : public VarF

{ int i;

 public:

 IntF(int a) : i(a) {};

 IntF& operator=(int a)

 { i=a; return *this; };

 void Print() const

 { cout << "int " << i; };

 void Incr()

 { i++; };

 FRUITMACRO(IntF)

};�
class CharF : public VarF

{ char c;

 public:

 CharF(char pC) : c(pC) { };

 CharF& operator=(char pC)

 { c=pC;return *this; };

 void Print() const

 { cout << "char " << c; };

 void Incr()

 { c++; c&=127; if (c<33) c=33; };

 FRUITMACRO(CharF)

};�
�

The italic commands (public Fruit, friend MyVar, FRUITMACRO) should be ignored for now. They will get important when we will reuse this example in the next two chapters.

Here are some things that can be done with our new class:

1. Creation

 VarF* p1; VarF* p2; VarF* p3;

1a) As we have already seen, these “objects” have to be pointers to the base class. For this example, I will not stress the difference between object and pointer to object anymore.

 p1=new IntF(7); p1->Print(); // shows: int 7

 p2=new CharF('c'); p2->Print(); // shows: char c

1b) As you can see, the creation of an object requires the name of the implementation.

2. Assignment

 // CRASH: p3->Print();

2a) The use of this pointer before its first assignment leads to a unpredictable behavior.

 p3=p2; p3->Print(); // shows: char c

2b) This assignment is very fast. Only an address and not the whole object is copied. This is called a shallow copy.

 // (*p3)='x'; This doesn't work, because the compiler doesn't know

 // that p3 actually points to a CharF.

2c) The “object” p3 can not be initialized with char.

3. Invocation of non-const member functions

 p3->Incr(); p2->Print(); // shows: char d !

3a) p3 still points to the object p2. Invocation of a non-constant member function on p3 “of course” also changes p2. If the programmer would have liked p2 to be a different object from p3, he had to program a method like: p3=p2.Clone();

4. Freeing

// delete p1; 		// Should p1 be deleted?? (Yes!)

 p1=p2; // address of former Obj 1 ist lost!!

 p1->Print(); // shows: char d!

4a) p1 still points to the IntF(7) object. An assignment raises the question, whether or not p1 has to be deleted. In this case, it is essential, because the address of that object would be lost otherwise.

// delete p2; // Should p2 be deleted?? (No, p3 still points to it.)

4b) But this idea cannot be generalized: The p2 object shall not be free’d here because p3 still points to it. How can one know that in general? (He cannot.)

delete p3; // Fine. Deleted Obj 2.

delete p2; // Wrong! Obj 2 was already deleted.

delete p1; // Wrong! Obj 2 was already deleted.

// Obj 1 cannot be deleted because it's address is lost!

4c) At end of our example, the question raises again: Which objects shall be deleted? The ARM states that it is an error to delete an object that is already deleted. [Annotated Reference Manual; Stroustrup; p. 499; §r5.3.4]

The above example is illustrated by the following figure:

� EINBETTEN Word.Picture.6 ���

Figure � SEQ Figure * ARABISCH �1�: Three pointers to two anonymous objects

The above shown way (ambigous use of objects and pointer to this objects) has the following disadvantages:

Table � SEQ Table * ARABISCH �3�: Disadvantages of classical object management with pointers

Severe memory management problems (When to delete an object?)�
�
Other “objets” could be changed, if shallow-copies are used for reasons of efficiency�
�
Unpredictable behavior of uninitialized objects�
�
User of the interface has to know concrete implementations�
�

It is interesting to compare this table with table 1. These four points are what was defined to be the expected properties from the new type handle.

Extension 1: Memory Management with SmartPointers

The previous chapter has shown that memory management is one of the main problems. For this reason, a class SmartPointer was introduced. It solves the problems related to memory management by using a reference counting mechanism. SmartPointers can be used directly as templates; no derivation is needed. A SmartPointer for a class C is for example defined like this:

SPtr<C> sp;		// similar to C* p;

SmartPointer act almost the same way as C pointer:

Table � SEQ Table * ARABISCH �4�: Properties of SmartPointers that are the same as for C pointers

Several SPtr can point to the very same object�
�
SPtr have to be dereferenced with the *-operator or with the (operator�
�
An SPtr<C> can be initialized with the following types: T, T*, SPtr<C> and Shell<C>�The assigned object will not be copied; SPtr always point to the original.�
�
An SPtr<C> can be compared (== and !=) against the following types: T*, SPtr<C>�
�
Assignment of NULL is allowed, dereferencing of NULL-SPtr’s is not caught by an rt-error�
�

In the following points, SPtr differ from C pointers:

Table � SEQ Table * ARABISCH �5�: Properties of SmartPointers that are the different from C pointers

SmartPointer cannot be deleted. This is not necessary anymore.�
�
The type C of SPtr<C> has to be derived from Fruit, so that a reference counter int refs resides in each object.�
�
An uninitialized SPtr always points to NULL (a C pointer would point “anywhere”)�
�
There is no operator+ to “move” an SPtr�
�

We will now do the former example with Smart Pointers:

1. Creation

 SPtr<VarF> p1, p2, p3;

 p1=new IntF(7); p1->Print(); // shows: int 7

 p2=new CharF('c'); p2->Print(); // shows: char c

1b) The creation of a new object still requires the implementation’s name.

2. Assignment

 p3->Print();

2a) Because p3 points to NULL, the use of this uninitialized pointer results on many systems in predictable behavior (maybe system exception or trap or something). Remember that a C-Pointer would point “anywhere” which results in completely unpredictable behaviour.

 p3=p2; p3->Print(); // shows: char c

2b) This assignment is still quite fast, independent of the object’s size. A pointer is copied, a variable incremented, another variable decremented, a comparison and maybe a delete performed. These operations can be translated in very few low-level assembler instructions (something like indirect CMP, INC, DEC, JMP). C++ can inline expand these functions so that no function overhead is generated. Please note that this operation is also a shallow copy.

 // (*p3)='x'; This doesn't work, because the compiler doesn't know

 // that p3 actually points to a CharF.

2c) It is still not possible to initialize p3 with a char.

3. Invocation of non-const member functions

 p3->Incr(); p2->Print(); // shows: char d !

3a) For this question, SmartPointers behave exactly like C pointers

4. Freeing

 p1=p2; // p1 is autom. deleted!

 p1->Print(); // shows: char d!

4a) p1 still points to the IntF(7) object. Because this anonymous object is only referenced by p1 (this is discovered because the reference count is one), the SPtr will delete it.

delete p2; // This produces a compile-time error

// DON'T DO THAT: delete &(*p2);

4b) The delete operator cannot be used anymore. When an SPtr’s scope ends, its destructor checks if the reference count equals zero. If yes, the object is deleted.

Now, have another look at Table 1: From our four initial expectations (1. memory management, 2. assignment efficiency, 3. protection, 4. initialization), the first and the third are solved.

Extension 2: Encapsulation with Shells (Handles)

Even with SmartPointers, the distinction between objects and pointer to objects remains unclear. This will soon change: We will introduce the type handle. When I designed this class, I thought that a handle acts like a shell as an outer object (interface) for an inner object (implementation) that is like a fruit. That’s why this was named the shell/fruit mechanism.

To use our example a third time, we will define a handle for VarF objects. This can be done by defining another class which is derived from Shell<>. Please note that this is different from SPtr<> which can be used directly without derivation.

class MyVar : public Shell<VarF>

{public:

 SHELL_INTF(MyVar,VarF)											// These three Lines...

 FRUITINIT_INTERFACE_FAM(MyVar,CharF,VarF,char)		// ... are ...

 FRUITINIT_INTERFACE_FAM(MyVar,IntF,VarF,int)			// preprocessor macros!

 void Print() const { Frt().Print(); cout << endl; };

 void Incr() { Frt().Incr(); };

};

We just introduce a new type with the following properties:

Table � SEQ Table * ARABISCH �6�: Properties of Handles

Instances of this type do not point to VarF objects. They should rather be considered as “being” VarF objects.�
�
Accessing the internal object is only possible with the interface in the handle. Handles cannot be dereferenced.�
�
A MyVar object of this example can be initialized with MyVar, char, int, but also with IntF, CharF and a ShellEngine. The macro command FRUITINIT_INTERFACE(MyVar, CharF,VarF,char)defines that an assignment of a char initializes a CharF object as fruit.�
�
Accessing an uninitialized MyVar object results in a “true” run-time error (not a system trap)�
�

We will now do the example a third time:

1. Creation

 MyVar V1=7; V1.Print(); // shows: int 7

 MyVar V2='c'; V2.Print(); // shows: char c

 MyVar V3;

1b) The creation and initialization of objects is direct and does not require knowledge about the implementation class. The user doesn’t have to deal with new!

2. Assignment

 // RunTime-Error: V3.Print();

2a) The use of this handle before it’s definition results in a run-time error. The next version of the library will support C++ exceptions.

 V3=V2; V3.Print(); // shows: char c

2b) This assignment takes the same time as an SPtr assignment. As we will see below, this assignment is a deep copy for the user. Internally, only a shallow copy is made at the moment.

 V3='x';

2c) As we have already seen above, it is now possible to assign any Fruit initializer to the handle.

	V2.Print(); // shows: char c - Obj 2 did not change!

2d) As we said, handles do not point: The V2 object was not touched when V3 was reassigned.

3. Invocation of non-const member functions

 V3=V2; V3.Print(); // Obj 'x' is freed!

3a) This line is only for reset purpose: V3 internally points to V2 again and CharF('x') is deleted.

 V3.Incr(); V2.Print(); // shows: char c - Obj 2 did not change!

 V3.Print(); // shows: 'd'

3b) Now it’s going to be interesting: V3 is changed with a non-const method. Even though the internal pointer of V3 just pointed to V2, it is not changed! When we invoked the non-const member, a deep copy was automatically created! This is called copy-on-write– or delayed deep-copy strategy.

Keep in mind that Print() is another method of MyVar, almost the same as Incr(). The invocation of Print() does not create a deep-copy, because Print() never changes the objects state. It is a constant member function. These following methods in MyVar look very same and use both Shell::Frt() to get access to the fruit:

void Print() const 	{ Frt().Print(); };

void Incr()				{ Frt().Incr(); };

Because Print() is const and Incr() isn’t, two different Frt() functions are called: For Print(), it is a constant variant without delayed deep-copy, for Incr() it is another variant that maybe creates a deep-copy..

4. Freeing

Of course, handles never have to be deleted.

5. Handles and SPtr

Maybe a programmer explicitly wants a pointer to an object. He wants to change the original object through that pointer. This can still be done with an SPtr:

	V3='x';

 SPtr<VarF> sp1=V3;

 sp1->Print(); cout<<endl;		// shows 'd'

 sp1->Incr(); 	// *sp1 is now 'e'

 V3.Print(); 	// Shows: char e - Obj 3 changed too

											 	// when manipulated by pointer

The V3 object was changed when the Incr() method was invoked on sp1.

The above example is illustrated by the following graphic. The fat line between shells (VarF) and fruits (IntF/CharF) shows that fruits are not really visible to a user of a shell. For the SPtr, the CharF object is visible.

� EINBETTEN Word.Picture.6 ���

Figure � SEQ Figure * ARABISCH �2�: Three Handles and a SmartPointer

If you reconsider table 1 now, you will see, that all four expectations are met by handles.

Results

Garbage Collection

Introduction

Memory management is one of the fundamental problems of all programming languages and operating systems. The question: Can the user be responsible for deallocating memory he allocated or shall the system do it automatically? This question lead to the introduction of an (operating system based) garbage collector on some systems (for example Oberon, Lisp, Smalltalk).

When I designed my shell/fruit technique, I found the reference counting method. Only later when I read [Wirth, Gutknecht] the idea came in my mind that garbage collection can in fact be implemented in a completely different way. Why this other method is not suitable for C++ and which problems the reference counting method holds, are discussed in this chapter.

Mark-Scan

Mark-Scan checks only at some predefined moments for free memory and not in every assignment. This is done as follows:

“It consists of two phases. In the first phase (mark phase), all referenced and therefore still accessible elements are marked. In the second phase, their unmarked complement is released.” [Wirth, Gutknecht]

It would be easy to maintain a list of allocated blocks in C++ by overloading the global new() operator. But it would be hard or impossible, to find out later if these blocks are still referenced by any C pointer because there is no way of getting to know global pointers and pointers in objects. Pointers in objects could be found if some kind of metainformation would be available (as for example in ET++ [Weinand, Gamma, Marty]).

Of course, we could define a new class similar to SPtr<> that registers all memory references in a global list, but this would, in my opinion, be much more inefficient than the reference counting method.

Circular Structures

[Wirth, Gutknecht] states that reference counting has a severe problem: Circular structures cannot be free’d. Of course, this is also true for smart pointers. I cannot see a way to avoid this.

Keep in mind that the original intention for the use of reference counting was not to have a memory management for trees and lists and these things, but for a better handling of class objects. In this application, circular structures are rather rare.

A Better Way to Return Objects from Functions

Handles are a good solution for another well-known problem in C++:

struct ABC 					{ void pure() = 0; 		};�struct C : public ABC	{ void pure() { ... };	};�

ABC& foo() 					{ return *new C; 			};		// BAD!

The design idea is clear: An abstract base class and another class derived from it. A (global) function that returns a new object of type ABC (or any derivation from it). The implementation has to be done with a pointer or reference, because, first, abstract base classes can anyway not be used in this direct way [ABC foo()] and, second, slicing problems would arise even if ABC wouldn’t be abstract.

The problem with this approach is, that the (global) function foo() allocates memory that it can never delete. Who will delete it? What happens with temporary objects? – As for example [Meyers, rule 23] states, this dilemma cannot be solved in standard C++.

Handles or SmartPointers make this problem very easy to solve:

SPtr<ABC> foo() 			{ return new C; 			};

This means that handles or at least smart pointer had to be an integral part of C++ !

Comparison with Coplien

[Coplien] describes a similar technique to my shell/fruit thing as letter/envelope idiom. Comparison:

 The basic technique is very similar: shell=envelope, fruit=letter.

My pattern is more read-to-use (superclasses & macros) than what [Coplien] describes (which is rather a how-to-do-it adivice).

 The greatest advantage, the copy-on-write strategy, was not found in C++ literature.

My project was developed before I got to know Coplien’s (and other, similar) books.

The same book presents in chapter 9.5 a completely different approach to garbage collection. It puts more demand in all related classes and is more complicated to understand. It seems to be less efficient because it works with a Baker’s algorithm (different from mark-scan and reference counting).

C++

Critics

The German report contains an approximately three pages long list of minor things that I found had to be improved in C++. The examples and explanations are not translated here. Below is simply a brief list of the points that were found:

	The order relation of signed and unsigned ints are wrong. �		Example: unsigned(0) < signed(-1)

	Lack of type Boolean.

	Lack of integers with range. PASCAL Example: VAR i : 1..100;

	Function overloading that also considers the return type should be possible.

	Search in cast operators should “look deeper”.

	Overloading of pre- and postfix operators should not be separated (as it is allowed now).

Separation of interface and implementation should be better (including templates & inlining).

	Improved preprocessor macro language should be supported (for compiler extension).

Advantages

As one might imagine, I am a C++ freak. The above mentioned minor critics do not change this. What I like in C++ is that I always “know what’s going on in the machine”. Additionally, it has some features that have basically nothing to do with object-orientation, but that I found very useful:

Table � SEQ Table * ARABISCH �7�: Advantages of C++

Name�
Description�
�
function overloading�
different functions with the same name but different argument lists�
�
operator overloading�
operators can be assigned to normal member functions for classes�
�
automatic constructor/destructor invocation�
special methods called “constructor” and “destructor” can be invoked on beginning and end of an object’s lifetime�
�
static objects�
tiny objects without hierarchy can be static. Not all objects are pointers!�
�
exception handling�
safe and reliable error management�
�

Summary

When I wanted to program a tiny library for symbolic mathematics in January 1994, I had almost no idea of what C++ was. Step by step I learned about object oriented programming the special features of C++. The classes for the mathematical project were quite nice, but for some reason, I didn't like that the user of these classes had to deal directly with pointers and memory management (especially deallocation). That's why I started working on an encapsulation mechanism that I called shell/fruit pattern. It was then developed and became independent of the math project.

During the whole project, other modules like a container class library, a string class, some functions for runtime errors and detection of memory leaks, as well as ideas about error safer programming were developed. In the original German report, these modules and ideas are documented too.

It can be stated that I reached my goal of having an easy to use idiom for memory management. These classes simplify the programming of object-oriented applications and make them more efficient in reasons of memory usage because of the implemented copy-on-write strategy.

																	Michael Vorburger

Acknowledgments

I want to thank my family, my dear friends Matthias Stickel, David Belart, HN, some persons of my (former) high-school (mainly Mr. H.R. Schneider), my colleague Ruedi Christen for his help and the whole ABACUS company for copies, time etc. And all others who helped me making this report what it is or who helped me in any other concern...

�
References

Stroustrup, Bjarne: The C++ Programming Language; 2nd edition; Addison-Wesley 1991 (93)

Meyers, Scott: Effective C++, 50 simple ways to improve your programs and design;�Addison-Wesley 1992

Coplien, James: Advanced C++ Programming Styles and Idioms; Addison-Wesley 1992

Wirth, Niklaus & Gutknecht, Jürg: Project Oberon; Addison-Wesley 1992

Weinand A., Gamma E., Marty R.: Design and Implementation of ET++, a Seamless Object-Oriented Application Framework; in Structured Programming, Vol. 10, No. 2, June 1989, p. 63-87

Kofler, Thomas: Robust iterators in ET++; in Structured Programming, Vol. 14, March '93, p. 62-85

�

European Union Contest for Young Scientists		Michael Vorburger, Switzerland

		� SEITE �16�

�SEITE �3�

